This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ipassi . By ipasslem5 , F is 0 for all QQ ; since it is continuous and QQ is dense in RR by qdensere2 , we conclude F is 0 for all RR . (Contributed by NM, 24-Aug-2007) (Revised by Mario Carneiro, 6-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ip1i.1 | |- X = ( BaseSet ` U ) |
|
| ip1i.2 | |- G = ( +v ` U ) |
||
| ip1i.4 | |- S = ( .sOLD ` U ) |
||
| ip1i.7 | |- P = ( .iOLD ` U ) |
||
| ip1i.9 | |- U e. CPreHilOLD |
||
| ipasslem7.a | |- A e. X |
||
| ipasslem7.b | |- B e. X |
||
| ipasslem7.f | |- F = ( w e. RR |-> ( ( ( w S A ) P B ) - ( w x. ( A P B ) ) ) ) |
||
| Assertion | ipasslem8 | |- F : RR --> { 0 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip1i.1 | |- X = ( BaseSet ` U ) |
|
| 2 | ip1i.2 | |- G = ( +v ` U ) |
|
| 3 | ip1i.4 | |- S = ( .sOLD ` U ) |
|
| 4 | ip1i.7 | |- P = ( .iOLD ` U ) |
|
| 5 | ip1i.9 | |- U e. CPreHilOLD |
|
| 6 | ipasslem7.a | |- A e. X |
|
| 7 | ipasslem7.b | |- B e. X |
|
| 8 | ipasslem7.f | |- F = ( w e. RR |-> ( ( ( w S A ) P B ) - ( w x. ( A P B ) ) ) ) |
|
| 9 | 0cn | |- 0 e. CC |
|
| 10 | qre | |- ( x e. QQ -> x e. RR ) |
|
| 11 | oveq1 | |- ( w = x -> ( w S A ) = ( x S A ) ) |
|
| 12 | 11 | oveq1d | |- ( w = x -> ( ( w S A ) P B ) = ( ( x S A ) P B ) ) |
| 13 | oveq1 | |- ( w = x -> ( w x. ( A P B ) ) = ( x x. ( A P B ) ) ) |
|
| 14 | 12 13 | oveq12d | |- ( w = x -> ( ( ( w S A ) P B ) - ( w x. ( A P B ) ) ) = ( ( ( x S A ) P B ) - ( x x. ( A P B ) ) ) ) |
| 15 | ovex | |- ( ( ( x S A ) P B ) - ( x x. ( A P B ) ) ) e. _V |
|
| 16 | 14 8 15 | fvmpt | |- ( x e. RR -> ( F ` x ) = ( ( ( x S A ) P B ) - ( x x. ( A P B ) ) ) ) |
| 17 | 10 16 | syl | |- ( x e. QQ -> ( F ` x ) = ( ( ( x S A ) P B ) - ( x x. ( A P B ) ) ) ) |
| 18 | qcn | |- ( x e. QQ -> x e. CC ) |
|
| 19 | 5 | phnvi | |- U e. NrmCVec |
| 20 | 1 3 | nvscl | |- ( ( U e. NrmCVec /\ x e. CC /\ A e. X ) -> ( x S A ) e. X ) |
| 21 | 19 20 | mp3an1 | |- ( ( x e. CC /\ A e. X ) -> ( x S A ) e. X ) |
| 22 | 18 21 | sylan | |- ( ( x e. QQ /\ A e. X ) -> ( x S A ) e. X ) |
| 23 | 1 4 | dipcl | |- ( ( U e. NrmCVec /\ ( x S A ) e. X /\ B e. X ) -> ( ( x S A ) P B ) e. CC ) |
| 24 | 19 7 23 | mp3an13 | |- ( ( x S A ) e. X -> ( ( x S A ) P B ) e. CC ) |
| 25 | 22 24 | syl | |- ( ( x e. QQ /\ A e. X ) -> ( ( x S A ) P B ) e. CC ) |
| 26 | 1 2 3 4 5 7 | ipasslem5 | |- ( ( x e. QQ /\ A e. X ) -> ( ( x S A ) P B ) = ( x x. ( A P B ) ) ) |
| 27 | 25 26 | subeq0bd | |- ( ( x e. QQ /\ A e. X ) -> ( ( ( x S A ) P B ) - ( x x. ( A P B ) ) ) = 0 ) |
| 28 | 6 27 | mpan2 | |- ( x e. QQ -> ( ( ( x S A ) P B ) - ( x x. ( A P B ) ) ) = 0 ) |
| 29 | 17 28 | eqtrd | |- ( x e. QQ -> ( F ` x ) = 0 ) |
| 30 | 29 | rgen | |- A. x e. QQ ( F ` x ) = 0 |
| 31 | 8 | funmpt2 | |- Fun F |
| 32 | qssre | |- QQ C_ RR |
|
| 33 | ovex | |- ( ( ( w S A ) P B ) - ( w x. ( A P B ) ) ) e. _V |
|
| 34 | 33 8 | dmmpti | |- dom F = RR |
| 35 | 32 34 | sseqtrri | |- QQ C_ dom F |
| 36 | funconstss | |- ( ( Fun F /\ QQ C_ dom F ) -> ( A. x e. QQ ( F ` x ) = 0 <-> QQ C_ ( `' F " { 0 } ) ) ) |
|
| 37 | 31 35 36 | mp2an | |- ( A. x e. QQ ( F ` x ) = 0 <-> QQ C_ ( `' F " { 0 } ) ) |
| 38 | 30 37 | mpbi | |- QQ C_ ( `' F " { 0 } ) |
| 39 | qdensere | |- ( ( cls ` ( topGen ` ran (,) ) ) ` QQ ) = RR |
|
| 40 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 41 | 40 | cnfldhaus | |- ( TopOpen ` CCfld ) e. Haus |
| 42 | haust1 | |- ( ( TopOpen ` CCfld ) e. Haus -> ( TopOpen ` CCfld ) e. Fre ) |
|
| 43 | 41 42 | ax-mp | |- ( TopOpen ` CCfld ) e. Fre |
| 44 | eqid | |- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
|
| 45 | 1 2 3 4 5 6 7 8 44 40 | ipasslem7 | |- F e. ( ( topGen ` ran (,) ) Cn ( TopOpen ` CCfld ) ) |
| 46 | uniretop | |- RR = U. ( topGen ` ran (,) ) |
|
| 47 | 40 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 48 | 47 | toponunii | |- CC = U. ( TopOpen ` CCfld ) |
| 49 | 46 48 | dnsconst | |- ( ( ( ( TopOpen ` CCfld ) e. Fre /\ F e. ( ( topGen ` ran (,) ) Cn ( TopOpen ` CCfld ) ) ) /\ ( 0 e. CC /\ QQ C_ ( `' F " { 0 } ) /\ ( ( cls ` ( topGen ` ran (,) ) ) ` QQ ) = RR ) ) -> F : RR --> { 0 } ) |
| 50 | 43 45 49 | mpanl12 | |- ( ( 0 e. CC /\ QQ C_ ( `' F " { 0 } ) /\ ( ( cls ` ( topGen ` ran (,) ) ) ` QQ ) = RR ) -> F : RR --> { 0 } ) |
| 51 | 9 38 39 50 | mp3an | |- F : RR --> { 0 } |