This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ipassi . Show that ( ( w S A ) P B ) - ( w x. ( A P B ) ) is continuous on RR . (Contributed by NM, 23-Aug-2007) (Revised by Mario Carneiro, 6-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ip1i.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| ip1i.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD | ||
| ipasslem7.a | ⊢ 𝐴 ∈ 𝑋 | ||
| ipasslem7.b | ⊢ 𝐵 ∈ 𝑋 | ||
| ipasslem7.f | ⊢ 𝐹 = ( 𝑤 ∈ ℝ ↦ ( ( ( 𝑤 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑤 · ( 𝐴 𝑃 𝐵 ) ) ) ) | ||
| ipasslem7.j | ⊢ 𝐽 = ( topGen ‘ ran (,) ) | ||
| ipasslem7.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| Assertion | ipasslem7 | ⊢ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip1i.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 4 | ip1i.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 5 | ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD | |
| 6 | ipasslem7.a | ⊢ 𝐴 ∈ 𝑋 | |
| 7 | ipasslem7.b | ⊢ 𝐵 ∈ 𝑋 | |
| 8 | ipasslem7.f | ⊢ 𝐹 = ( 𝑤 ∈ ℝ ↦ ( ( ( 𝑤 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑤 · ( 𝐴 𝑃 𝐵 ) ) ) ) | |
| 9 | ipasslem7.j | ⊢ 𝐽 = ( topGen ‘ ran (,) ) | |
| 10 | ipasslem7.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 11 | 10 | tgioo2 | ⊢ ( topGen ‘ ran (,) ) = ( 𝐾 ↾t ℝ ) |
| 12 | 9 11 | eqtri | ⊢ 𝐽 = ( 𝐾 ↾t ℝ ) |
| 13 | 10 | cnfldtopon | ⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 14 | 13 | a1i | ⊢ ( ⊤ → 𝐾 ∈ ( TopOn ‘ ℂ ) ) |
| 15 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 16 | 15 | a1i | ⊢ ( ⊤ → ℝ ⊆ ℂ ) |
| 17 | 14 | cnmptid | ⊢ ( ⊤ → ( 𝑤 ∈ ℂ ↦ 𝑤 ) ∈ ( 𝐾 Cn 𝐾 ) ) |
| 18 | 5 | phnvi | ⊢ 𝑈 ∈ NrmCVec |
| 19 | eqid | ⊢ ( IndMet ‘ 𝑈 ) = ( IndMet ‘ 𝑈 ) | |
| 20 | 1 19 | imsxmet | ⊢ ( 𝑈 ∈ NrmCVec → ( IndMet ‘ 𝑈 ) ∈ ( ∞Met ‘ 𝑋 ) ) |
| 21 | 18 20 | ax-mp | ⊢ ( IndMet ‘ 𝑈 ) ∈ ( ∞Met ‘ 𝑋 ) |
| 22 | eqid | ⊢ ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) = ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) | |
| 23 | 22 | mopntopon | ⊢ ( ( IndMet ‘ 𝑈 ) ∈ ( ∞Met ‘ 𝑋 ) → ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) ∈ ( TopOn ‘ 𝑋 ) ) |
| 24 | 21 23 | mp1i | ⊢ ( ⊤ → ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) ∈ ( TopOn ‘ 𝑋 ) ) |
| 25 | 6 | a1i | ⊢ ( ⊤ → 𝐴 ∈ 𝑋 ) |
| 26 | 14 24 25 | cnmptc | ⊢ ( ⊤ → ( 𝑤 ∈ ℂ ↦ 𝐴 ) ∈ ( 𝐾 Cn ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) ) ) |
| 27 | 19 22 3 10 | smcn | ⊢ ( 𝑈 ∈ NrmCVec → 𝑆 ∈ ( ( 𝐾 ×t ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) ) Cn ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) ) ) |
| 28 | 18 27 | mp1i | ⊢ ( ⊤ → 𝑆 ∈ ( ( 𝐾 ×t ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) ) Cn ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) ) ) |
| 29 | 14 17 26 28 | cnmpt12f | ⊢ ( ⊤ → ( 𝑤 ∈ ℂ ↦ ( 𝑤 𝑆 𝐴 ) ) ∈ ( 𝐾 Cn ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) ) ) |
| 30 | 7 | a1i | ⊢ ( ⊤ → 𝐵 ∈ 𝑋 ) |
| 31 | 14 24 30 | cnmptc | ⊢ ( ⊤ → ( 𝑤 ∈ ℂ ↦ 𝐵 ) ∈ ( 𝐾 Cn ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) ) ) |
| 32 | 4 19 22 10 | dipcn | ⊢ ( 𝑈 ∈ NrmCVec → 𝑃 ∈ ( ( ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) ×t ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) ) Cn 𝐾 ) ) |
| 33 | 18 32 | mp1i | ⊢ ( ⊤ → 𝑃 ∈ ( ( ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) ×t ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) ) Cn 𝐾 ) ) |
| 34 | 14 29 31 33 | cnmpt12f | ⊢ ( ⊤ → ( 𝑤 ∈ ℂ ↦ ( ( 𝑤 𝑆 𝐴 ) 𝑃 𝐵 ) ) ∈ ( 𝐾 Cn 𝐾 ) ) |
| 35 | 1 4 | dipcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐵 ) ∈ ℂ ) |
| 36 | 18 6 7 35 | mp3an | ⊢ ( 𝐴 𝑃 𝐵 ) ∈ ℂ |
| 37 | 36 | a1i | ⊢ ( ⊤ → ( 𝐴 𝑃 𝐵 ) ∈ ℂ ) |
| 38 | 14 14 37 | cnmptc | ⊢ ( ⊤ → ( 𝑤 ∈ ℂ ↦ ( 𝐴 𝑃 𝐵 ) ) ∈ ( 𝐾 Cn 𝐾 ) ) |
| 39 | 10 | mulcn | ⊢ · ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) |
| 40 | 39 | a1i | ⊢ ( ⊤ → · ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) ) |
| 41 | 14 17 38 40 | cnmpt12f | ⊢ ( ⊤ → ( 𝑤 ∈ ℂ ↦ ( 𝑤 · ( 𝐴 𝑃 𝐵 ) ) ) ∈ ( 𝐾 Cn 𝐾 ) ) |
| 42 | 10 | subcn | ⊢ − ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) |
| 43 | 42 | a1i | ⊢ ( ⊤ → − ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) ) |
| 44 | 14 34 41 43 | cnmpt12f | ⊢ ( ⊤ → ( 𝑤 ∈ ℂ ↦ ( ( ( 𝑤 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑤 · ( 𝐴 𝑃 𝐵 ) ) ) ) ∈ ( 𝐾 Cn 𝐾 ) ) |
| 45 | 12 14 16 44 | cnmpt1res | ⊢ ( ⊤ → ( 𝑤 ∈ ℝ ↦ ( ( ( 𝑤 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑤 · ( 𝐴 𝑃 𝐵 ) ) ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 46 | 45 | mptru | ⊢ ( 𝑤 ∈ ℝ ↦ ( ( ( 𝑤 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑤 · ( 𝐴 𝑃 𝐵 ) ) ) ) ∈ ( 𝐽 Cn 𝐾 ) |
| 47 | 8 46 | eqeltri | ⊢ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) |