This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of a collection of weak universes is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | intwun | ⊢ ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ WUni ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) → 𝐴 ⊆ WUni ) | |
| 2 | 1 | sselda | ⊢ ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑢 ∈ 𝐴 ) → 𝑢 ∈ WUni ) |
| 3 | wuntr | ⊢ ( 𝑢 ∈ WUni → Tr 𝑢 ) | |
| 4 | 2 3 | syl | ⊢ ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑢 ∈ 𝐴 ) → Tr 𝑢 ) |
| 5 | 4 | ralrimiva | ⊢ ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) → ∀ 𝑢 ∈ 𝐴 Tr 𝑢 ) |
| 6 | trint | ⊢ ( ∀ 𝑢 ∈ 𝐴 Tr 𝑢 → Tr ∩ 𝐴 ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) → Tr ∩ 𝐴 ) |
| 8 | 2 | wun0 | ⊢ ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑢 ∈ 𝐴 ) → ∅ ∈ 𝑢 ) |
| 9 | 8 | ralrimiva | ⊢ ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) → ∀ 𝑢 ∈ 𝐴 ∅ ∈ 𝑢 ) |
| 10 | 0ex | ⊢ ∅ ∈ V | |
| 11 | 10 | elint2 | ⊢ ( ∅ ∈ ∩ 𝐴 ↔ ∀ 𝑢 ∈ 𝐴 ∅ ∈ 𝑢 ) |
| 12 | 9 11 | sylibr | ⊢ ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) → ∅ ∈ ∩ 𝐴 ) |
| 13 | 12 | ne0d | ⊢ ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ≠ ∅ ) |
| 14 | 2 | adantlr | ⊢ ( ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) ∧ 𝑢 ∈ 𝐴 ) → 𝑢 ∈ WUni ) |
| 15 | intss1 | ⊢ ( 𝑢 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑢 ) | |
| 16 | 15 | adantl | ⊢ ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑢 ∈ 𝐴 ) → ∩ 𝐴 ⊆ 𝑢 ) |
| 17 | 16 | sselda | ⊢ ( ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ∩ 𝐴 ) → 𝑥 ∈ 𝑢 ) |
| 18 | 17 | an32s | ⊢ ( ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) ∧ 𝑢 ∈ 𝐴 ) → 𝑥 ∈ 𝑢 ) |
| 19 | 14 18 | wununi | ⊢ ( ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) ∧ 𝑢 ∈ 𝐴 ) → ∪ 𝑥 ∈ 𝑢 ) |
| 20 | 19 | ralrimiva | ⊢ ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) → ∀ 𝑢 ∈ 𝐴 ∪ 𝑥 ∈ 𝑢 ) |
| 21 | vuniex | ⊢ ∪ 𝑥 ∈ V | |
| 22 | 21 | elint2 | ⊢ ( ∪ 𝑥 ∈ ∩ 𝐴 ↔ ∀ 𝑢 ∈ 𝐴 ∪ 𝑥 ∈ 𝑢 ) |
| 23 | 20 22 | sylibr | ⊢ ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) → ∪ 𝑥 ∈ ∩ 𝐴 ) |
| 24 | 14 18 | wunpw | ⊢ ( ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) ∧ 𝑢 ∈ 𝐴 ) → 𝒫 𝑥 ∈ 𝑢 ) |
| 25 | 24 | ralrimiva | ⊢ ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) → ∀ 𝑢 ∈ 𝐴 𝒫 𝑥 ∈ 𝑢 ) |
| 26 | vpwex | ⊢ 𝒫 𝑥 ∈ V | |
| 27 | 26 | elint2 | ⊢ ( 𝒫 𝑥 ∈ ∩ 𝐴 ↔ ∀ 𝑢 ∈ 𝐴 𝒫 𝑥 ∈ 𝑢 ) |
| 28 | 25 27 | sylibr | ⊢ ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) → 𝒫 𝑥 ∈ ∩ 𝐴 ) |
| 29 | 14 | adantlr | ⊢ ( ( ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) ∧ 𝑦 ∈ ∩ 𝐴 ) ∧ 𝑢 ∈ 𝐴 ) → 𝑢 ∈ WUni ) |
| 30 | 18 | adantlr | ⊢ ( ( ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) ∧ 𝑦 ∈ ∩ 𝐴 ) ∧ 𝑢 ∈ 𝐴 ) → 𝑥 ∈ 𝑢 ) |
| 31 | 15 | adantl | ⊢ ( ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) ∧ 𝑢 ∈ 𝐴 ) → ∩ 𝐴 ⊆ 𝑢 ) |
| 32 | 31 | sselda | ⊢ ( ( ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑦 ∈ ∩ 𝐴 ) → 𝑦 ∈ 𝑢 ) |
| 33 | 32 | an32s | ⊢ ( ( ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) ∧ 𝑦 ∈ ∩ 𝐴 ) ∧ 𝑢 ∈ 𝐴 ) → 𝑦 ∈ 𝑢 ) |
| 34 | 29 30 33 | wunpr | ⊢ ( ( ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) ∧ 𝑦 ∈ ∩ 𝐴 ) ∧ 𝑢 ∈ 𝐴 ) → { 𝑥 , 𝑦 } ∈ 𝑢 ) |
| 35 | 34 | ralrimiva | ⊢ ( ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) ∧ 𝑦 ∈ ∩ 𝐴 ) → ∀ 𝑢 ∈ 𝐴 { 𝑥 , 𝑦 } ∈ 𝑢 ) |
| 36 | prex | ⊢ { 𝑥 , 𝑦 } ∈ V | |
| 37 | 36 | elint2 | ⊢ ( { 𝑥 , 𝑦 } ∈ ∩ 𝐴 ↔ ∀ 𝑢 ∈ 𝐴 { 𝑥 , 𝑦 } ∈ 𝑢 ) |
| 38 | 35 37 | sylibr | ⊢ ( ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) ∧ 𝑦 ∈ ∩ 𝐴 ) → { 𝑥 , 𝑦 } ∈ ∩ 𝐴 ) |
| 39 | 38 | ralrimiva | ⊢ ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) → ∀ 𝑦 ∈ ∩ 𝐴 { 𝑥 , 𝑦 } ∈ ∩ 𝐴 ) |
| 40 | 23 28 39 | 3jca | ⊢ ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) → ( ∪ 𝑥 ∈ ∩ 𝐴 ∧ 𝒫 𝑥 ∈ ∩ 𝐴 ∧ ∀ 𝑦 ∈ ∩ 𝐴 { 𝑥 , 𝑦 } ∈ ∩ 𝐴 ) ) |
| 41 | 40 | ralrimiva | ⊢ ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) → ∀ 𝑥 ∈ ∩ 𝐴 ( ∪ 𝑥 ∈ ∩ 𝐴 ∧ 𝒫 𝑥 ∈ ∩ 𝐴 ∧ ∀ 𝑦 ∈ ∩ 𝐴 { 𝑥 , 𝑦 } ∈ ∩ 𝐴 ) ) |
| 42 | simpr | ⊢ ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) → 𝐴 ≠ ∅ ) | |
| 43 | intex | ⊢ ( 𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V ) | |
| 44 | 42 43 | sylib | ⊢ ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ V ) |
| 45 | iswun | ⊢ ( ∩ 𝐴 ∈ V → ( ∩ 𝐴 ∈ WUni ↔ ( Tr ∩ 𝐴 ∧ ∩ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ ∩ 𝐴 ( ∪ 𝑥 ∈ ∩ 𝐴 ∧ 𝒫 𝑥 ∈ ∩ 𝐴 ∧ ∀ 𝑦 ∈ ∩ 𝐴 { 𝑥 , 𝑦 } ∈ ∩ 𝐴 ) ) ) ) | |
| 46 | 44 45 | syl | ⊢ ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) → ( ∩ 𝐴 ∈ WUni ↔ ( Tr ∩ 𝐴 ∧ ∩ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ ∩ 𝐴 ( ∪ 𝑥 ∈ ∩ 𝐴 ∧ 𝒫 𝑥 ∈ ∩ 𝐴 ∧ ∀ 𝑦 ∈ ∩ 𝐴 { 𝑥 , 𝑦 } ∈ ∩ 𝐴 ) ) ) ) |
| 47 | 7 13 41 46 | mpbir3and | ⊢ ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ WUni ) |