This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A weak universe is closed under union. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wununi.1 | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| wununi.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | ||
| Assertion | wununi | ⊢ ( 𝜑 → ∪ 𝐴 ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wununi.1 | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 2 | wununi.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | |
| 3 | unieq | ⊢ ( 𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴 ) | |
| 4 | 3 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( ∪ 𝑥 ∈ 𝑈 ↔ ∪ 𝐴 ∈ 𝑈 ) ) |
| 5 | iswun | ⊢ ( 𝑈 ∈ WUni → ( 𝑈 ∈ WUni ↔ ( Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑈 ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) ) | |
| 6 | 5 | ibi | ⊢ ( 𝑈 ∈ WUni → ( Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑈 ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) |
| 7 | 6 | simp3d | ⊢ ( 𝑈 ∈ WUni → ∀ 𝑥 ∈ 𝑈 ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) |
| 8 | simp1 | ⊢ ( ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) → ∪ 𝑥 ∈ 𝑈 ) | |
| 9 | 8 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑈 ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) → ∀ 𝑥 ∈ 𝑈 ∪ 𝑥 ∈ 𝑈 ) |
| 10 | 1 7 9 | 3syl | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑈 ∪ 𝑥 ∈ 𝑈 ) |
| 11 | 4 10 2 | rspcdva | ⊢ ( 𝜑 → ∪ 𝐴 ∈ 𝑈 ) |