This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A weak universe contains the empty set. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wun0.1 | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| Assertion | wun0 | ⊢ ( 𝜑 → ∅ ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wun0.1 | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 2 | iswun | ⊢ ( 𝑈 ∈ WUni → ( 𝑈 ∈ WUni ↔ ( Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑈 ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) ) | |
| 3 | 2 | ibi | ⊢ ( 𝑈 ∈ WUni → ( Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑈 ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) |
| 4 | 3 | simp2d | ⊢ ( 𝑈 ∈ WUni → 𝑈 ≠ ∅ ) |
| 5 | 1 4 | syl | ⊢ ( 𝜑 → 𝑈 ≠ ∅ ) |
| 6 | n0 | ⊢ ( 𝑈 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝑈 ) | |
| 7 | 5 6 | sylib | ⊢ ( 𝜑 → ∃ 𝑥 𝑥 ∈ 𝑈 ) |
| 8 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → 𝑈 ∈ WUni ) |
| 9 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ 𝑈 ) | |
| 10 | 0ss | ⊢ ∅ ⊆ 𝑥 | |
| 11 | 10 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → ∅ ⊆ 𝑥 ) |
| 12 | 8 9 11 | wunss | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → ∅ ∈ 𝑈 ) |
| 13 | 7 12 | exlimddv | ⊢ ( 𝜑 → ∅ ∈ 𝑈 ) |