This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of a collection of weak universes is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | intwun | |- ( ( A C_ WUni /\ A =/= (/) ) -> |^| A e. WUni ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( A C_ WUni /\ A =/= (/) ) -> A C_ WUni ) |
|
| 2 | 1 | sselda | |- ( ( ( A C_ WUni /\ A =/= (/) ) /\ u e. A ) -> u e. WUni ) |
| 3 | wuntr | |- ( u e. WUni -> Tr u ) |
|
| 4 | 2 3 | syl | |- ( ( ( A C_ WUni /\ A =/= (/) ) /\ u e. A ) -> Tr u ) |
| 5 | 4 | ralrimiva | |- ( ( A C_ WUni /\ A =/= (/) ) -> A. u e. A Tr u ) |
| 6 | trint | |- ( A. u e. A Tr u -> Tr |^| A ) |
|
| 7 | 5 6 | syl | |- ( ( A C_ WUni /\ A =/= (/) ) -> Tr |^| A ) |
| 8 | 2 | wun0 | |- ( ( ( A C_ WUni /\ A =/= (/) ) /\ u e. A ) -> (/) e. u ) |
| 9 | 8 | ralrimiva | |- ( ( A C_ WUni /\ A =/= (/) ) -> A. u e. A (/) e. u ) |
| 10 | 0ex | |- (/) e. _V |
|
| 11 | 10 | elint2 | |- ( (/) e. |^| A <-> A. u e. A (/) e. u ) |
| 12 | 9 11 | sylibr | |- ( ( A C_ WUni /\ A =/= (/) ) -> (/) e. |^| A ) |
| 13 | 12 | ne0d | |- ( ( A C_ WUni /\ A =/= (/) ) -> |^| A =/= (/) ) |
| 14 | 2 | adantlr | |- ( ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) /\ u e. A ) -> u e. WUni ) |
| 15 | intss1 | |- ( u e. A -> |^| A C_ u ) |
|
| 16 | 15 | adantl | |- ( ( ( A C_ WUni /\ A =/= (/) ) /\ u e. A ) -> |^| A C_ u ) |
| 17 | 16 | sselda | |- ( ( ( ( A C_ WUni /\ A =/= (/) ) /\ u e. A ) /\ x e. |^| A ) -> x e. u ) |
| 18 | 17 | an32s | |- ( ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) /\ u e. A ) -> x e. u ) |
| 19 | 14 18 | wununi | |- ( ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) /\ u e. A ) -> U. x e. u ) |
| 20 | 19 | ralrimiva | |- ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) -> A. u e. A U. x e. u ) |
| 21 | vuniex | |- U. x e. _V |
|
| 22 | 21 | elint2 | |- ( U. x e. |^| A <-> A. u e. A U. x e. u ) |
| 23 | 20 22 | sylibr | |- ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) -> U. x e. |^| A ) |
| 24 | 14 18 | wunpw | |- ( ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) /\ u e. A ) -> ~P x e. u ) |
| 25 | 24 | ralrimiva | |- ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) -> A. u e. A ~P x e. u ) |
| 26 | vpwex | |- ~P x e. _V |
|
| 27 | 26 | elint2 | |- ( ~P x e. |^| A <-> A. u e. A ~P x e. u ) |
| 28 | 25 27 | sylibr | |- ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) -> ~P x e. |^| A ) |
| 29 | 14 | adantlr | |- ( ( ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) /\ y e. |^| A ) /\ u e. A ) -> u e. WUni ) |
| 30 | 18 | adantlr | |- ( ( ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) /\ y e. |^| A ) /\ u e. A ) -> x e. u ) |
| 31 | 15 | adantl | |- ( ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) /\ u e. A ) -> |^| A C_ u ) |
| 32 | 31 | sselda | |- ( ( ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) /\ u e. A ) /\ y e. |^| A ) -> y e. u ) |
| 33 | 32 | an32s | |- ( ( ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) /\ y e. |^| A ) /\ u e. A ) -> y e. u ) |
| 34 | 29 30 33 | wunpr | |- ( ( ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) /\ y e. |^| A ) /\ u e. A ) -> { x , y } e. u ) |
| 35 | 34 | ralrimiva | |- ( ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) /\ y e. |^| A ) -> A. u e. A { x , y } e. u ) |
| 36 | prex | |- { x , y } e. _V |
|
| 37 | 36 | elint2 | |- ( { x , y } e. |^| A <-> A. u e. A { x , y } e. u ) |
| 38 | 35 37 | sylibr | |- ( ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) /\ y e. |^| A ) -> { x , y } e. |^| A ) |
| 39 | 38 | ralrimiva | |- ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) -> A. y e. |^| A { x , y } e. |^| A ) |
| 40 | 23 28 39 | 3jca | |- ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) -> ( U. x e. |^| A /\ ~P x e. |^| A /\ A. y e. |^| A { x , y } e. |^| A ) ) |
| 41 | 40 | ralrimiva | |- ( ( A C_ WUni /\ A =/= (/) ) -> A. x e. |^| A ( U. x e. |^| A /\ ~P x e. |^| A /\ A. y e. |^| A { x , y } e. |^| A ) ) |
| 42 | simpr | |- ( ( A C_ WUni /\ A =/= (/) ) -> A =/= (/) ) |
|
| 43 | intex | |- ( A =/= (/) <-> |^| A e. _V ) |
|
| 44 | 42 43 | sylib | |- ( ( A C_ WUni /\ A =/= (/) ) -> |^| A e. _V ) |
| 45 | iswun | |- ( |^| A e. _V -> ( |^| A e. WUni <-> ( Tr |^| A /\ |^| A =/= (/) /\ A. x e. |^| A ( U. x e. |^| A /\ ~P x e. |^| A /\ A. y e. |^| A { x , y } e. |^| A ) ) ) ) |
|
| 46 | 44 45 | syl | |- ( ( A C_ WUni /\ A =/= (/) ) -> ( |^| A e. WUni <-> ( Tr |^| A /\ |^| A =/= (/) /\ A. x e. |^| A ( U. x e. |^| A /\ ~P x e. |^| A /\ A. y e. |^| A { x , y } e. |^| A ) ) ) ) |
| 47 | 7 13 41 46 | mpbir3and | |- ( ( A C_ WUni /\ A =/= (/) ) -> |^| A e. WUni ) |