This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A weak universe is closed under pairing. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wununi.1 | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| wununi.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | ||
| wunpr.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑈 ) | ||
| Assertion | wunpr | ⊢ ( 𝜑 → { 𝐴 , 𝐵 } ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wununi.1 | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 2 | wununi.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | |
| 3 | wunpr.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑈 ) | |
| 4 | iswun | ⊢ ( 𝑈 ∈ WUni → ( 𝑈 ∈ WUni ↔ ( Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑈 ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) ) | |
| 5 | 4 | ibi | ⊢ ( 𝑈 ∈ WUni → ( Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑈 ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) |
| 6 | 5 | simp3d | ⊢ ( 𝑈 ∈ WUni → ∀ 𝑥 ∈ 𝑈 ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) |
| 7 | simp3 | ⊢ ( ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) → ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) | |
| 8 | 7 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑈 ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) → ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) |
| 9 | 1 6 8 | 3syl | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) |
| 10 | preq1 | ⊢ ( 𝑥 = 𝐴 → { 𝑥 , 𝑦 } = { 𝐴 , 𝑦 } ) | |
| 11 | 10 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( { 𝑥 , 𝑦 } ∈ 𝑈 ↔ { 𝐴 , 𝑦 } ∈ 𝑈 ) ) |
| 12 | preq2 | ⊢ ( 𝑦 = 𝐵 → { 𝐴 , 𝑦 } = { 𝐴 , 𝐵 } ) | |
| 13 | 12 | eleq1d | ⊢ ( 𝑦 = 𝐵 → ( { 𝐴 , 𝑦 } ∈ 𝑈 ↔ { 𝐴 , 𝐵 } ∈ 𝑈 ) ) |
| 14 | 11 13 | rspc2va | ⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈 ) ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) → { 𝐴 , 𝐵 } ∈ 𝑈 ) |
| 15 | 2 3 9 14 | syl21anc | ⊢ ( 𝜑 → { 𝐴 , 𝐵 } ∈ 𝑈 ) |