This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of a collection of Tarski classes is a Tarski class. (Contributed by FL, 17-Apr-2011) (Proof shortened by Mario Carneiro, 20-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inttsk | ⊢ ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ Tarski ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | ⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ∈ ∩ 𝐴 ) → 𝐴 ⊆ Tarski ) | |
| 2 | 1 | sselda | ⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ∈ ∩ 𝐴 ) ∧ 𝑡 ∈ 𝐴 ) → 𝑡 ∈ Tarski ) |
| 3 | elinti | ⊢ ( 𝑧 ∈ ∩ 𝐴 → ( 𝑡 ∈ 𝐴 → 𝑧 ∈ 𝑡 ) ) | |
| 4 | 3 | imp | ⊢ ( ( 𝑧 ∈ ∩ 𝐴 ∧ 𝑡 ∈ 𝐴 ) → 𝑧 ∈ 𝑡 ) |
| 5 | 4 | adantll | ⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ∈ ∩ 𝐴 ) ∧ 𝑡 ∈ 𝐴 ) → 𝑧 ∈ 𝑡 ) |
| 6 | tskpwss | ⊢ ( ( 𝑡 ∈ Tarski ∧ 𝑧 ∈ 𝑡 ) → 𝒫 𝑧 ⊆ 𝑡 ) | |
| 7 | 2 5 6 | syl2anc | ⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ∈ ∩ 𝐴 ) ∧ 𝑡 ∈ 𝐴 ) → 𝒫 𝑧 ⊆ 𝑡 ) |
| 8 | 7 | ralrimiva | ⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ∈ ∩ 𝐴 ) → ∀ 𝑡 ∈ 𝐴 𝒫 𝑧 ⊆ 𝑡 ) |
| 9 | ssint | ⊢ ( 𝒫 𝑧 ⊆ ∩ 𝐴 ↔ ∀ 𝑡 ∈ 𝐴 𝒫 𝑧 ⊆ 𝑡 ) | |
| 10 | 8 9 | sylibr | ⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ∈ ∩ 𝐴 ) → 𝒫 𝑧 ⊆ ∩ 𝐴 ) |
| 11 | tskpw | ⊢ ( ( 𝑡 ∈ Tarski ∧ 𝑧 ∈ 𝑡 ) → 𝒫 𝑧 ∈ 𝑡 ) | |
| 12 | 2 5 11 | syl2anc | ⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ∈ ∩ 𝐴 ) ∧ 𝑡 ∈ 𝐴 ) → 𝒫 𝑧 ∈ 𝑡 ) |
| 13 | 12 | ralrimiva | ⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ∈ ∩ 𝐴 ) → ∀ 𝑡 ∈ 𝐴 𝒫 𝑧 ∈ 𝑡 ) |
| 14 | vpwex | ⊢ 𝒫 𝑧 ∈ V | |
| 15 | 14 | elint2 | ⊢ ( 𝒫 𝑧 ∈ ∩ 𝐴 ↔ ∀ 𝑡 ∈ 𝐴 𝒫 𝑧 ∈ 𝑡 ) |
| 16 | 13 15 | sylibr | ⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ∈ ∩ 𝐴 ) → 𝒫 𝑧 ∈ ∩ 𝐴 ) |
| 17 | 10 16 | jca | ⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ∈ ∩ 𝐴 ) → ( 𝒫 𝑧 ⊆ ∩ 𝐴 ∧ 𝒫 𝑧 ∈ ∩ 𝐴 ) ) |
| 18 | 17 | ralrimiva | ⊢ ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) → ∀ 𝑧 ∈ ∩ 𝐴 ( 𝒫 𝑧 ⊆ ∩ 𝐴 ∧ 𝒫 𝑧 ∈ ∩ 𝐴 ) ) |
| 19 | elpwi | ⊢ ( 𝑧 ∈ 𝒫 ∩ 𝐴 → 𝑧 ⊆ ∩ 𝐴 ) | |
| 20 | rexnal | ⊢ ( ∃ 𝑡 ∈ 𝐴 ¬ 𝑧 ∈ 𝑡 ↔ ¬ ∀ 𝑡 ∈ 𝐴 𝑧 ∈ 𝑡 ) | |
| 21 | simpr | ⊢ ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) → 𝐴 ≠ ∅ ) | |
| 22 | intex | ⊢ ( 𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V ) | |
| 23 | 21 22 | sylib | ⊢ ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ V ) |
| 24 | 23 | ad2antrr | ⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → ∩ 𝐴 ∈ V ) |
| 25 | simplr | ⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → 𝑧 ⊆ ∩ 𝐴 ) | |
| 26 | ssdomg | ⊢ ( ∩ 𝐴 ∈ V → ( 𝑧 ⊆ ∩ 𝐴 → 𝑧 ≼ ∩ 𝐴 ) ) | |
| 27 | 24 25 26 | sylc | ⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → 𝑧 ≼ ∩ 𝐴 ) |
| 28 | vex | ⊢ 𝑡 ∈ V | |
| 29 | intss1 | ⊢ ( 𝑡 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑡 ) | |
| 30 | 29 | ad2antrl | ⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → ∩ 𝐴 ⊆ 𝑡 ) |
| 31 | ssdomg | ⊢ ( 𝑡 ∈ V → ( ∩ 𝐴 ⊆ 𝑡 → ∩ 𝐴 ≼ 𝑡 ) ) | |
| 32 | 28 30 31 | mpsyl | ⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → ∩ 𝐴 ≼ 𝑡 ) |
| 33 | simprr | ⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → ¬ 𝑧 ∈ 𝑡 ) | |
| 34 | simplll | ⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → 𝐴 ⊆ Tarski ) | |
| 35 | simprl | ⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → 𝑡 ∈ 𝐴 ) | |
| 36 | 34 35 | sseldd | ⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → 𝑡 ∈ Tarski ) |
| 37 | 25 30 | sstrd | ⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → 𝑧 ⊆ 𝑡 ) |
| 38 | tsken | ⊢ ( ( 𝑡 ∈ Tarski ∧ 𝑧 ⊆ 𝑡 ) → ( 𝑧 ≈ 𝑡 ∨ 𝑧 ∈ 𝑡 ) ) | |
| 39 | 36 37 38 | syl2anc | ⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → ( 𝑧 ≈ 𝑡 ∨ 𝑧 ∈ 𝑡 ) ) |
| 40 | 39 | ord | ⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → ( ¬ 𝑧 ≈ 𝑡 → 𝑧 ∈ 𝑡 ) ) |
| 41 | 33 40 | mt3d | ⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → 𝑧 ≈ 𝑡 ) |
| 42 | 41 | ensymd | ⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → 𝑡 ≈ 𝑧 ) |
| 43 | domentr | ⊢ ( ( ∩ 𝐴 ≼ 𝑡 ∧ 𝑡 ≈ 𝑧 ) → ∩ 𝐴 ≼ 𝑧 ) | |
| 44 | 32 42 43 | syl2anc | ⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → ∩ 𝐴 ≼ 𝑧 ) |
| 45 | sbth | ⊢ ( ( 𝑧 ≼ ∩ 𝐴 ∧ ∩ 𝐴 ≼ 𝑧 ) → 𝑧 ≈ ∩ 𝐴 ) | |
| 46 | 27 44 45 | syl2anc | ⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → 𝑧 ≈ ∩ 𝐴 ) |
| 47 | 46 | rexlimdvaa | ⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) → ( ∃ 𝑡 ∈ 𝐴 ¬ 𝑧 ∈ 𝑡 → 𝑧 ≈ ∩ 𝐴 ) ) |
| 48 | 20 47 | biimtrrid | ⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) → ( ¬ ∀ 𝑡 ∈ 𝐴 𝑧 ∈ 𝑡 → 𝑧 ≈ ∩ 𝐴 ) ) |
| 49 | 48 | con1d | ⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) → ( ¬ 𝑧 ≈ ∩ 𝐴 → ∀ 𝑡 ∈ 𝐴 𝑧 ∈ 𝑡 ) ) |
| 50 | vex | ⊢ 𝑧 ∈ V | |
| 51 | 50 | elint2 | ⊢ ( 𝑧 ∈ ∩ 𝐴 ↔ ∀ 𝑡 ∈ 𝐴 𝑧 ∈ 𝑡 ) |
| 52 | 49 51 | imbitrrdi | ⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) → ( ¬ 𝑧 ≈ ∩ 𝐴 → 𝑧 ∈ ∩ 𝐴 ) ) |
| 53 | 52 | orrd | ⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) → ( 𝑧 ≈ ∩ 𝐴 ∨ 𝑧 ∈ ∩ 𝐴 ) ) |
| 54 | 19 53 | sylan2 | ⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ∈ 𝒫 ∩ 𝐴 ) → ( 𝑧 ≈ ∩ 𝐴 ∨ 𝑧 ∈ ∩ 𝐴 ) ) |
| 55 | 54 | ralrimiva | ⊢ ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) → ∀ 𝑧 ∈ 𝒫 ∩ 𝐴 ( 𝑧 ≈ ∩ 𝐴 ∨ 𝑧 ∈ ∩ 𝐴 ) ) |
| 56 | eltsk2g | ⊢ ( ∩ 𝐴 ∈ V → ( ∩ 𝐴 ∈ Tarski ↔ ( ∀ 𝑧 ∈ ∩ 𝐴 ( 𝒫 𝑧 ⊆ ∩ 𝐴 ∧ 𝒫 𝑧 ∈ ∩ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝒫 ∩ 𝐴 ( 𝑧 ≈ ∩ 𝐴 ∨ 𝑧 ∈ ∩ 𝐴 ) ) ) ) | |
| 57 | 23 56 | syl | ⊢ ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) → ( ∩ 𝐴 ∈ Tarski ↔ ( ∀ 𝑧 ∈ ∩ 𝐴 ( 𝒫 𝑧 ⊆ ∩ 𝐴 ∧ 𝒫 𝑧 ∈ ∩ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝒫 ∩ 𝐴 ( 𝑧 ≈ ∩ 𝐴 ∨ 𝑧 ∈ ∩ 𝐴 ) ) ) ) |
| 58 | 18 55 57 | mpbir2and | ⊢ ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ Tarski ) |