This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of a collection of Tarski classes is a Tarski class. (Contributed by FL, 17-Apr-2011) (Proof shortened by Mario Carneiro, 20-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inttsk | |- ( ( A C_ Tarski /\ A =/= (/) ) -> |^| A e. Tarski ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | |- ( ( ( A C_ Tarski /\ A =/= (/) ) /\ z e. |^| A ) -> A C_ Tarski ) |
|
| 2 | 1 | sselda | |- ( ( ( ( A C_ Tarski /\ A =/= (/) ) /\ z e. |^| A ) /\ t e. A ) -> t e. Tarski ) |
| 3 | elinti | |- ( z e. |^| A -> ( t e. A -> z e. t ) ) |
|
| 4 | 3 | imp | |- ( ( z e. |^| A /\ t e. A ) -> z e. t ) |
| 5 | 4 | adantll | |- ( ( ( ( A C_ Tarski /\ A =/= (/) ) /\ z e. |^| A ) /\ t e. A ) -> z e. t ) |
| 6 | tskpwss | |- ( ( t e. Tarski /\ z e. t ) -> ~P z C_ t ) |
|
| 7 | 2 5 6 | syl2anc | |- ( ( ( ( A C_ Tarski /\ A =/= (/) ) /\ z e. |^| A ) /\ t e. A ) -> ~P z C_ t ) |
| 8 | 7 | ralrimiva | |- ( ( ( A C_ Tarski /\ A =/= (/) ) /\ z e. |^| A ) -> A. t e. A ~P z C_ t ) |
| 9 | ssint | |- ( ~P z C_ |^| A <-> A. t e. A ~P z C_ t ) |
|
| 10 | 8 9 | sylibr | |- ( ( ( A C_ Tarski /\ A =/= (/) ) /\ z e. |^| A ) -> ~P z C_ |^| A ) |
| 11 | tskpw | |- ( ( t e. Tarski /\ z e. t ) -> ~P z e. t ) |
|
| 12 | 2 5 11 | syl2anc | |- ( ( ( ( A C_ Tarski /\ A =/= (/) ) /\ z e. |^| A ) /\ t e. A ) -> ~P z e. t ) |
| 13 | 12 | ralrimiva | |- ( ( ( A C_ Tarski /\ A =/= (/) ) /\ z e. |^| A ) -> A. t e. A ~P z e. t ) |
| 14 | vpwex | |- ~P z e. _V |
|
| 15 | 14 | elint2 | |- ( ~P z e. |^| A <-> A. t e. A ~P z e. t ) |
| 16 | 13 15 | sylibr | |- ( ( ( A C_ Tarski /\ A =/= (/) ) /\ z e. |^| A ) -> ~P z e. |^| A ) |
| 17 | 10 16 | jca | |- ( ( ( A C_ Tarski /\ A =/= (/) ) /\ z e. |^| A ) -> ( ~P z C_ |^| A /\ ~P z e. |^| A ) ) |
| 18 | 17 | ralrimiva | |- ( ( A C_ Tarski /\ A =/= (/) ) -> A. z e. |^| A ( ~P z C_ |^| A /\ ~P z e. |^| A ) ) |
| 19 | elpwi | |- ( z e. ~P |^| A -> z C_ |^| A ) |
|
| 20 | rexnal | |- ( E. t e. A -. z e. t <-> -. A. t e. A z e. t ) |
|
| 21 | simpr | |- ( ( A C_ Tarski /\ A =/= (/) ) -> A =/= (/) ) |
|
| 22 | intex | |- ( A =/= (/) <-> |^| A e. _V ) |
|
| 23 | 21 22 | sylib | |- ( ( A C_ Tarski /\ A =/= (/) ) -> |^| A e. _V ) |
| 24 | 23 | ad2antrr | |- ( ( ( ( A C_ Tarski /\ A =/= (/) ) /\ z C_ |^| A ) /\ ( t e. A /\ -. z e. t ) ) -> |^| A e. _V ) |
| 25 | simplr | |- ( ( ( ( A C_ Tarski /\ A =/= (/) ) /\ z C_ |^| A ) /\ ( t e. A /\ -. z e. t ) ) -> z C_ |^| A ) |
|
| 26 | ssdomg | |- ( |^| A e. _V -> ( z C_ |^| A -> z ~<_ |^| A ) ) |
|
| 27 | 24 25 26 | sylc | |- ( ( ( ( A C_ Tarski /\ A =/= (/) ) /\ z C_ |^| A ) /\ ( t e. A /\ -. z e. t ) ) -> z ~<_ |^| A ) |
| 28 | vex | |- t e. _V |
|
| 29 | intss1 | |- ( t e. A -> |^| A C_ t ) |
|
| 30 | 29 | ad2antrl | |- ( ( ( ( A C_ Tarski /\ A =/= (/) ) /\ z C_ |^| A ) /\ ( t e. A /\ -. z e. t ) ) -> |^| A C_ t ) |
| 31 | ssdomg | |- ( t e. _V -> ( |^| A C_ t -> |^| A ~<_ t ) ) |
|
| 32 | 28 30 31 | mpsyl | |- ( ( ( ( A C_ Tarski /\ A =/= (/) ) /\ z C_ |^| A ) /\ ( t e. A /\ -. z e. t ) ) -> |^| A ~<_ t ) |
| 33 | simprr | |- ( ( ( ( A C_ Tarski /\ A =/= (/) ) /\ z C_ |^| A ) /\ ( t e. A /\ -. z e. t ) ) -> -. z e. t ) |
|
| 34 | simplll | |- ( ( ( ( A C_ Tarski /\ A =/= (/) ) /\ z C_ |^| A ) /\ ( t e. A /\ -. z e. t ) ) -> A C_ Tarski ) |
|
| 35 | simprl | |- ( ( ( ( A C_ Tarski /\ A =/= (/) ) /\ z C_ |^| A ) /\ ( t e. A /\ -. z e. t ) ) -> t e. A ) |
|
| 36 | 34 35 | sseldd | |- ( ( ( ( A C_ Tarski /\ A =/= (/) ) /\ z C_ |^| A ) /\ ( t e. A /\ -. z e. t ) ) -> t e. Tarski ) |
| 37 | 25 30 | sstrd | |- ( ( ( ( A C_ Tarski /\ A =/= (/) ) /\ z C_ |^| A ) /\ ( t e. A /\ -. z e. t ) ) -> z C_ t ) |
| 38 | tsken | |- ( ( t e. Tarski /\ z C_ t ) -> ( z ~~ t \/ z e. t ) ) |
|
| 39 | 36 37 38 | syl2anc | |- ( ( ( ( A C_ Tarski /\ A =/= (/) ) /\ z C_ |^| A ) /\ ( t e. A /\ -. z e. t ) ) -> ( z ~~ t \/ z e. t ) ) |
| 40 | 39 | ord | |- ( ( ( ( A C_ Tarski /\ A =/= (/) ) /\ z C_ |^| A ) /\ ( t e. A /\ -. z e. t ) ) -> ( -. z ~~ t -> z e. t ) ) |
| 41 | 33 40 | mt3d | |- ( ( ( ( A C_ Tarski /\ A =/= (/) ) /\ z C_ |^| A ) /\ ( t e. A /\ -. z e. t ) ) -> z ~~ t ) |
| 42 | 41 | ensymd | |- ( ( ( ( A C_ Tarski /\ A =/= (/) ) /\ z C_ |^| A ) /\ ( t e. A /\ -. z e. t ) ) -> t ~~ z ) |
| 43 | domentr | |- ( ( |^| A ~<_ t /\ t ~~ z ) -> |^| A ~<_ z ) |
|
| 44 | 32 42 43 | syl2anc | |- ( ( ( ( A C_ Tarski /\ A =/= (/) ) /\ z C_ |^| A ) /\ ( t e. A /\ -. z e. t ) ) -> |^| A ~<_ z ) |
| 45 | sbth | |- ( ( z ~<_ |^| A /\ |^| A ~<_ z ) -> z ~~ |^| A ) |
|
| 46 | 27 44 45 | syl2anc | |- ( ( ( ( A C_ Tarski /\ A =/= (/) ) /\ z C_ |^| A ) /\ ( t e. A /\ -. z e. t ) ) -> z ~~ |^| A ) |
| 47 | 46 | rexlimdvaa | |- ( ( ( A C_ Tarski /\ A =/= (/) ) /\ z C_ |^| A ) -> ( E. t e. A -. z e. t -> z ~~ |^| A ) ) |
| 48 | 20 47 | biimtrrid | |- ( ( ( A C_ Tarski /\ A =/= (/) ) /\ z C_ |^| A ) -> ( -. A. t e. A z e. t -> z ~~ |^| A ) ) |
| 49 | 48 | con1d | |- ( ( ( A C_ Tarski /\ A =/= (/) ) /\ z C_ |^| A ) -> ( -. z ~~ |^| A -> A. t e. A z e. t ) ) |
| 50 | vex | |- z e. _V |
|
| 51 | 50 | elint2 | |- ( z e. |^| A <-> A. t e. A z e. t ) |
| 52 | 49 51 | imbitrrdi | |- ( ( ( A C_ Tarski /\ A =/= (/) ) /\ z C_ |^| A ) -> ( -. z ~~ |^| A -> z e. |^| A ) ) |
| 53 | 52 | orrd | |- ( ( ( A C_ Tarski /\ A =/= (/) ) /\ z C_ |^| A ) -> ( z ~~ |^| A \/ z e. |^| A ) ) |
| 54 | 19 53 | sylan2 | |- ( ( ( A C_ Tarski /\ A =/= (/) ) /\ z e. ~P |^| A ) -> ( z ~~ |^| A \/ z e. |^| A ) ) |
| 55 | 54 | ralrimiva | |- ( ( A C_ Tarski /\ A =/= (/) ) -> A. z e. ~P |^| A ( z ~~ |^| A \/ z e. |^| A ) ) |
| 56 | eltsk2g | |- ( |^| A e. _V -> ( |^| A e. Tarski <-> ( A. z e. |^| A ( ~P z C_ |^| A /\ ~P z e. |^| A ) /\ A. z e. ~P |^| A ( z ~~ |^| A \/ z e. |^| A ) ) ) ) |
|
| 57 | 23 56 | syl | |- ( ( A C_ Tarski /\ A =/= (/) ) -> ( |^| A e. Tarski <-> ( A. z e. |^| A ( ~P z C_ |^| A /\ ~P z e. |^| A ) /\ A. z e. ~P |^| A ( z ~~ |^| A \/ z e. |^| A ) ) ) ) |
| 58 | 18 55 57 | mpbir2and | |- ( ( A C_ Tarski /\ A =/= (/) ) -> |^| A e. Tarski ) |