This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: First axiom of a Tarski class. The subsets of an element of a Tarski class belong to the class. (Contributed by FL, 30-Dec-2010) (Proof shortened by Mario Carneiro, 20-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tskpwss | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → 𝒫 𝐴 ⊆ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eltskg | ⊢ ( 𝑇 ∈ Tarski → ( 𝑇 ∈ Tarski ↔ ( ∀ 𝑥 ∈ 𝑇 ( 𝒫 𝑥 ⊆ 𝑇 ∧ ∃ 𝑦 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑇 ( 𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇 ) ) ) ) | |
| 2 | 1 | ibi | ⊢ ( 𝑇 ∈ Tarski → ( ∀ 𝑥 ∈ 𝑇 ( 𝒫 𝑥 ⊆ 𝑇 ∧ ∃ 𝑦 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑇 ( 𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇 ) ) ) |
| 3 | 2 | simpld | ⊢ ( 𝑇 ∈ Tarski → ∀ 𝑥 ∈ 𝑇 ( 𝒫 𝑥 ⊆ 𝑇 ∧ ∃ 𝑦 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑦 ) ) |
| 4 | simpl | ⊢ ( ( 𝒫 𝑥 ⊆ 𝑇 ∧ ∃ 𝑦 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑦 ) → 𝒫 𝑥 ⊆ 𝑇 ) | |
| 5 | 4 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑇 ( 𝒫 𝑥 ⊆ 𝑇 ∧ ∃ 𝑦 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑦 ) → ∀ 𝑥 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑇 ) |
| 6 | 3 5 | syl | ⊢ ( 𝑇 ∈ Tarski → ∀ 𝑥 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑇 ) |
| 7 | pweq | ⊢ ( 𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴 ) | |
| 8 | 7 | sseq1d | ⊢ ( 𝑥 = 𝐴 → ( 𝒫 𝑥 ⊆ 𝑇 ↔ 𝒫 𝐴 ⊆ 𝑇 ) ) |
| 9 | 8 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑇 ∧ 𝐴 ∈ 𝑇 ) → 𝒫 𝐴 ⊆ 𝑇 ) |
| 10 | 6 9 | sylan | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → 𝒫 𝐴 ⊆ 𝑇 ) |