This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An exponentiation law for infinite cardinals. Similar to Lemma 6.2 of Jech p. 43. Although this version of infmap avoids the axiom of choice, it requires the powerset of an infinite set to be well-orderable and so is usually not applicable. (Contributed by NM, 1-Oct-2004) (Revised by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infmap2 | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) → ( 𝐴 ↑m 𝐵 ) ≈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝐵 = ∅ → ( 𝐴 ↑m 𝐵 ) = ( 𝐴 ↑m ∅ ) ) | |
| 2 | breq2 | ⊢ ( 𝐵 = ∅ → ( 𝑥 ≈ 𝐵 ↔ 𝑥 ≈ ∅ ) ) | |
| 3 | 2 | anbi2d | ⊢ ( 𝐵 = ∅ → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅ ) ) ) |
| 4 | 3 | abbidv | ⊢ ( 𝐵 = ∅ → { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } = { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅ ) } ) |
| 5 | 1 4 | breq12d | ⊢ ( 𝐵 = ∅ → ( ( 𝐴 ↑m 𝐵 ) ≈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ↔ ( 𝐴 ↑m ∅ ) ≈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅ ) } ) ) |
| 6 | simpl2 | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → 𝐵 ≼ 𝐴 ) | |
| 7 | reldom | ⊢ Rel ≼ | |
| 8 | 7 | brrelex1i | ⊢ ( 𝐵 ≼ 𝐴 → 𝐵 ∈ V ) |
| 9 | 6 8 | syl | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → 𝐵 ∈ V ) |
| 10 | 7 | brrelex2i | ⊢ ( 𝐵 ≼ 𝐴 → 𝐴 ∈ V ) |
| 11 | 6 10 | syl | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → 𝐴 ∈ V ) |
| 12 | xpcomeng | ⊢ ( ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) → ( 𝐵 × 𝐴 ) ≈ ( 𝐴 × 𝐵 ) ) | |
| 13 | 9 11 12 | syl2anc | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ( 𝐵 × 𝐴 ) ≈ ( 𝐴 × 𝐵 ) ) |
| 14 | simpl3 | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ( 𝐴 ↑m 𝐵 ) ∈ dom card ) | |
| 15 | simpr | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → 𝐵 ≠ ∅ ) | |
| 16 | mapdom3 | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐵 ≠ ∅ ) → 𝐴 ≼ ( 𝐴 ↑m 𝐵 ) ) | |
| 17 | 11 9 15 16 | syl3anc | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → 𝐴 ≼ ( 𝐴 ↑m 𝐵 ) ) |
| 18 | numdom | ⊢ ( ( ( 𝐴 ↑m 𝐵 ) ∈ dom card ∧ 𝐴 ≼ ( 𝐴 ↑m 𝐵 ) ) → 𝐴 ∈ dom card ) | |
| 19 | 14 17 18 | syl2anc | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → 𝐴 ∈ dom card ) |
| 20 | simpl1 | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ω ≼ 𝐴 ) | |
| 21 | infxpabs | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴 ) ) → ( 𝐴 × 𝐵 ) ≈ 𝐴 ) | |
| 22 | 19 20 15 6 21 | syl22anc | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ( 𝐴 × 𝐵 ) ≈ 𝐴 ) |
| 23 | entr | ⊢ ( ( ( 𝐵 × 𝐴 ) ≈ ( 𝐴 × 𝐵 ) ∧ ( 𝐴 × 𝐵 ) ≈ 𝐴 ) → ( 𝐵 × 𝐴 ) ≈ 𝐴 ) | |
| 24 | 13 22 23 | syl2anc | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ( 𝐵 × 𝐴 ) ≈ 𝐴 ) |
| 25 | ssenen | ⊢ ( ( 𝐵 × 𝐴 ) ≈ 𝐴 → { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥 ≈ 𝐵 ) } ≈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ) | |
| 26 | 24 25 | syl | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥 ≈ 𝐵 ) } ≈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ) |
| 27 | relen | ⊢ Rel ≈ | |
| 28 | 27 | brrelex1i | ⊢ ( { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥 ≈ 𝐵 ) } ≈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } → { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥 ≈ 𝐵 ) } ∈ V ) |
| 29 | 26 28 | syl | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥 ≈ 𝐵 ) } ∈ V ) |
| 30 | abid2 | ⊢ { 𝑥 ∣ 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) } = ( 𝐴 ↑m 𝐵 ) | |
| 31 | elmapi | ⊢ ( 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) → 𝑥 : 𝐵 ⟶ 𝐴 ) | |
| 32 | fssxp | ⊢ ( 𝑥 : 𝐵 ⟶ 𝐴 → 𝑥 ⊆ ( 𝐵 × 𝐴 ) ) | |
| 33 | ffun | ⊢ ( 𝑥 : 𝐵 ⟶ 𝐴 → Fun 𝑥 ) | |
| 34 | vex | ⊢ 𝑥 ∈ V | |
| 35 | 34 | fundmen | ⊢ ( Fun 𝑥 → dom 𝑥 ≈ 𝑥 ) |
| 36 | ensym | ⊢ ( dom 𝑥 ≈ 𝑥 → 𝑥 ≈ dom 𝑥 ) | |
| 37 | 33 35 36 | 3syl | ⊢ ( 𝑥 : 𝐵 ⟶ 𝐴 → 𝑥 ≈ dom 𝑥 ) |
| 38 | fdm | ⊢ ( 𝑥 : 𝐵 ⟶ 𝐴 → dom 𝑥 = 𝐵 ) | |
| 39 | 37 38 | breqtrd | ⊢ ( 𝑥 : 𝐵 ⟶ 𝐴 → 𝑥 ≈ 𝐵 ) |
| 40 | 32 39 | jca | ⊢ ( 𝑥 : 𝐵 ⟶ 𝐴 → ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥 ≈ 𝐵 ) ) |
| 41 | 31 40 | syl | ⊢ ( 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) → ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥 ≈ 𝐵 ) ) |
| 42 | 41 | ss2abi | ⊢ { 𝑥 ∣ 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) } ⊆ { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥 ≈ 𝐵 ) } |
| 43 | 30 42 | eqsstrri | ⊢ ( 𝐴 ↑m 𝐵 ) ⊆ { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥 ≈ 𝐵 ) } |
| 44 | ssdomg | ⊢ ( { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥 ≈ 𝐵 ) } ∈ V → ( ( 𝐴 ↑m 𝐵 ) ⊆ { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥 ≈ 𝐵 ) } → ( 𝐴 ↑m 𝐵 ) ≼ { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥 ≈ 𝐵 ) } ) ) | |
| 45 | 29 43 44 | mpisyl | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ( 𝐴 ↑m 𝐵 ) ≼ { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥 ≈ 𝐵 ) } ) |
| 46 | domentr | ⊢ ( ( ( 𝐴 ↑m 𝐵 ) ≼ { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥 ≈ 𝐵 ) } ∧ { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥 ≈ 𝐵 ) } ≈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ) → ( 𝐴 ↑m 𝐵 ) ≼ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ) | |
| 47 | 45 26 46 | syl2anc | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ( 𝐴 ↑m 𝐵 ) ≼ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ) |
| 48 | ovex | ⊢ ( 𝐴 ↑m 𝐵 ) ∈ V | |
| 49 | 48 | mptex | ⊢ ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) ∈ V |
| 50 | 49 | rnex | ⊢ ran ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) ∈ V |
| 51 | ensym | ⊢ ( 𝑥 ≈ 𝐵 → 𝐵 ≈ 𝑥 ) | |
| 52 | 51 | ad2antll | ⊢ ( ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) ) → 𝐵 ≈ 𝑥 ) |
| 53 | bren | ⊢ ( 𝐵 ≈ 𝑥 ↔ ∃ 𝑓 𝑓 : 𝐵 –1-1-onto→ 𝑥 ) | |
| 54 | 52 53 | sylib | ⊢ ( ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) ) → ∃ 𝑓 𝑓 : 𝐵 –1-1-onto→ 𝑥 ) |
| 55 | f1of | ⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝑥 → 𝑓 : 𝐵 ⟶ 𝑥 ) | |
| 56 | 55 | adantl | ⊢ ( ( ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) ) ∧ 𝑓 : 𝐵 –1-1-onto→ 𝑥 ) → 𝑓 : 𝐵 ⟶ 𝑥 ) |
| 57 | simplrl | ⊢ ( ( ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) ) ∧ 𝑓 : 𝐵 –1-1-onto→ 𝑥 ) → 𝑥 ⊆ 𝐴 ) | |
| 58 | 56 57 | fssd | ⊢ ( ( ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) ) ∧ 𝑓 : 𝐵 –1-1-onto→ 𝑥 ) → 𝑓 : 𝐵 ⟶ 𝐴 ) |
| 59 | 11 9 | elmapd | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↔ 𝑓 : 𝐵 ⟶ 𝐴 ) ) |
| 60 | 59 | ad2antrr | ⊢ ( ( ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) ) ∧ 𝑓 : 𝐵 –1-1-onto→ 𝑥 ) → ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↔ 𝑓 : 𝐵 ⟶ 𝐴 ) ) |
| 61 | 58 60 | mpbird | ⊢ ( ( ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) ) ∧ 𝑓 : 𝐵 –1-1-onto→ 𝑥 ) → 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ) |
| 62 | f1ofo | ⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝑥 → 𝑓 : 𝐵 –onto→ 𝑥 ) | |
| 63 | forn | ⊢ ( 𝑓 : 𝐵 –onto→ 𝑥 → ran 𝑓 = 𝑥 ) | |
| 64 | 62 63 | syl | ⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝑥 → ran 𝑓 = 𝑥 ) |
| 65 | 64 | adantl | ⊢ ( ( ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) ) ∧ 𝑓 : 𝐵 –1-1-onto→ 𝑥 ) → ran 𝑓 = 𝑥 ) |
| 66 | 65 | eqcomd | ⊢ ( ( ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) ) ∧ 𝑓 : 𝐵 –1-1-onto→ 𝑥 ) → 𝑥 = ran 𝑓 ) |
| 67 | 61 66 | jca | ⊢ ( ( ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) ) ∧ 𝑓 : 𝐵 –1-1-onto→ 𝑥 ) → ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ∧ 𝑥 = ran 𝑓 ) ) |
| 68 | 67 | ex | ⊢ ( ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) ) → ( 𝑓 : 𝐵 –1-1-onto→ 𝑥 → ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ∧ 𝑥 = ran 𝑓 ) ) ) |
| 69 | 68 | eximdv | ⊢ ( ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) ) → ( ∃ 𝑓 𝑓 : 𝐵 –1-1-onto→ 𝑥 → ∃ 𝑓 ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ∧ 𝑥 = ran 𝑓 ) ) ) |
| 70 | 54 69 | mpd | ⊢ ( ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) ) → ∃ 𝑓 ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ∧ 𝑥 = ran 𝑓 ) ) |
| 71 | df-rex | ⊢ ( ∃ 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) 𝑥 = ran 𝑓 ↔ ∃ 𝑓 ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ∧ 𝑥 = ran 𝑓 ) ) | |
| 72 | 70 71 | sylibr | ⊢ ( ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) ) → ∃ 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) 𝑥 = ran 𝑓 ) |
| 73 | 72 | ex | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) → ∃ 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) 𝑥 = ran 𝑓 ) ) |
| 74 | 73 | ss2abdv | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ⊆ { 𝑥 ∣ ∃ 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) 𝑥 = ran 𝑓 } ) |
| 75 | eqid | ⊢ ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) = ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) | |
| 76 | 75 | rnmpt | ⊢ ran ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) = { 𝑥 ∣ ∃ 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) 𝑥 = ran 𝑓 } |
| 77 | 74 76 | sseqtrrdi | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ⊆ ran ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) ) |
| 78 | ssdomg | ⊢ ( ran ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) ∈ V → ( { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ⊆ ran ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) → { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ≼ ran ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) ) ) | |
| 79 | 50 77 78 | mpsyl | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ≼ ran ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) ) |
| 80 | vex | ⊢ 𝑓 ∈ V | |
| 81 | 80 | rnex | ⊢ ran 𝑓 ∈ V |
| 82 | 81 | rgenw | ⊢ ∀ 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ran 𝑓 ∈ V |
| 83 | 75 | fnmpt | ⊢ ( ∀ 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ran 𝑓 ∈ V → ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) Fn ( 𝐴 ↑m 𝐵 ) ) |
| 84 | 82 83 | mp1i | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) Fn ( 𝐴 ↑m 𝐵 ) ) |
| 85 | dffn4 | ⊢ ( ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) Fn ( 𝐴 ↑m 𝐵 ) ↔ ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) : ( 𝐴 ↑m 𝐵 ) –onto→ ran ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) ) | |
| 86 | 84 85 | sylib | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) : ( 𝐴 ↑m 𝐵 ) –onto→ ran ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) ) |
| 87 | fodomnum | ⊢ ( ( 𝐴 ↑m 𝐵 ) ∈ dom card → ( ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) : ( 𝐴 ↑m 𝐵 ) –onto→ ran ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) → ran ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) ≼ ( 𝐴 ↑m 𝐵 ) ) ) | |
| 88 | 14 86 87 | sylc | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ran ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) ≼ ( 𝐴 ↑m 𝐵 ) ) |
| 89 | domtr | ⊢ ( ( { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ≼ ran ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) ∧ ran ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) ≼ ( 𝐴 ↑m 𝐵 ) ) → { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ≼ ( 𝐴 ↑m 𝐵 ) ) | |
| 90 | 79 88 89 | syl2anc | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ≼ ( 𝐴 ↑m 𝐵 ) ) |
| 91 | sbth | ⊢ ( ( ( 𝐴 ↑m 𝐵 ) ≼ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ∧ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ≼ ( 𝐴 ↑m 𝐵 ) ) → ( 𝐴 ↑m 𝐵 ) ≈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ) | |
| 92 | 47 90 91 | syl2anc | ⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ( 𝐴 ↑m 𝐵 ) ≈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ) |
| 93 | 7 | brrelex2i | ⊢ ( ω ≼ 𝐴 → 𝐴 ∈ V ) |
| 94 | 93 | 3ad2ant1 | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) → 𝐴 ∈ V ) |
| 95 | map0e | ⊢ ( 𝐴 ∈ V → ( 𝐴 ↑m ∅ ) = 1o ) | |
| 96 | 94 95 | syl | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) → ( 𝐴 ↑m ∅ ) = 1o ) |
| 97 | 1oex | ⊢ 1o ∈ V | |
| 98 | 97 | enref | ⊢ 1o ≈ 1o |
| 99 | df-sn | ⊢ { ∅ } = { 𝑥 ∣ 𝑥 = ∅ } | |
| 100 | df1o2 | ⊢ 1o = { ∅ } | |
| 101 | en0 | ⊢ ( 𝑥 ≈ ∅ ↔ 𝑥 = ∅ ) | |
| 102 | 101 | anbi2i | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅ ) ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 = ∅ ) ) |
| 103 | 0ss | ⊢ ∅ ⊆ 𝐴 | |
| 104 | sseq1 | ⊢ ( 𝑥 = ∅ → ( 𝑥 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴 ) ) | |
| 105 | 103 104 | mpbiri | ⊢ ( 𝑥 = ∅ → 𝑥 ⊆ 𝐴 ) |
| 106 | 105 | pm4.71ri | ⊢ ( 𝑥 = ∅ ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 = ∅ ) ) |
| 107 | 102 106 | bitr4i | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅ ) ↔ 𝑥 = ∅ ) |
| 108 | 107 | abbii | ⊢ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅ ) } = { 𝑥 ∣ 𝑥 = ∅ } |
| 109 | 99 100 108 | 3eqtr4ri | ⊢ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅ ) } = 1o |
| 110 | 98 109 | breqtrri | ⊢ 1o ≈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅ ) } |
| 111 | 96 110 | eqbrtrdi | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) → ( 𝐴 ↑m ∅ ) ≈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅ ) } ) |
| 112 | 5 92 111 | pm2.61ne | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) → ( 𝐴 ↑m 𝐵 ) ≈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ) |