This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Set exponentiation dominates the base. (Contributed by Mario Carneiro, 30-Apr-2015) (Proof shortened by AV, 17-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mapdom3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐵 ≠ ∅ ) → 𝐴 ≼ ( 𝐴 ↑m 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | ⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐵 ) | |
| 2 | simp1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → 𝐴 ∈ 𝑉 ) | |
| 3 | simp3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) | |
| 4 | 2 3 | mapsnend | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 ↑m { 𝑥 } ) ≈ 𝐴 ) |
| 5 | 4 | ensymd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → 𝐴 ≈ ( 𝐴 ↑m { 𝑥 } ) ) |
| 6 | simp2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → 𝐵 ∈ 𝑊 ) | |
| 7 | 3 | snssd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → { 𝑥 } ⊆ 𝐵 ) |
| 8 | ssdomg | ⊢ ( 𝐵 ∈ 𝑊 → ( { 𝑥 } ⊆ 𝐵 → { 𝑥 } ≼ 𝐵 ) ) | |
| 9 | 6 7 8 | sylc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → { 𝑥 } ≼ 𝐵 ) |
| 10 | vex | ⊢ 𝑥 ∈ V | |
| 11 | 10 | snnz | ⊢ { 𝑥 } ≠ ∅ |
| 12 | simpl | ⊢ ( ( { 𝑥 } = ∅ ∧ 𝐴 = ∅ ) → { 𝑥 } = ∅ ) | |
| 13 | 12 | necon3ai | ⊢ ( { 𝑥 } ≠ ∅ → ¬ ( { 𝑥 } = ∅ ∧ 𝐴 = ∅ ) ) |
| 14 | 11 13 | ax-mp | ⊢ ¬ ( { 𝑥 } = ∅ ∧ 𝐴 = ∅ ) |
| 15 | mapdom2 | ⊢ ( ( { 𝑥 } ≼ 𝐵 ∧ ¬ ( { 𝑥 } = ∅ ∧ 𝐴 = ∅ ) ) → ( 𝐴 ↑m { 𝑥 } ) ≼ ( 𝐴 ↑m 𝐵 ) ) | |
| 16 | 9 14 15 | sylancl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 ↑m { 𝑥 } ) ≼ ( 𝐴 ↑m 𝐵 ) ) |
| 17 | endomtr | ⊢ ( ( 𝐴 ≈ ( 𝐴 ↑m { 𝑥 } ) ∧ ( 𝐴 ↑m { 𝑥 } ) ≼ ( 𝐴 ↑m 𝐵 ) ) → 𝐴 ≼ ( 𝐴 ↑m 𝐵 ) ) | |
| 18 | 5 16 17 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → 𝐴 ≼ ( 𝐴 ↑m 𝐵 ) ) |
| 19 | 18 | 3expia | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑥 ∈ 𝐵 → 𝐴 ≼ ( 𝐴 ↑m 𝐵 ) ) ) |
| 20 | 19 | exlimdv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑥 𝑥 ∈ 𝐵 → 𝐴 ≼ ( 𝐴 ↑m 𝐵 ) ) ) |
| 21 | 1 20 | biimtrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐵 ≠ ∅ → 𝐴 ≼ ( 𝐴 ↑m 𝐵 ) ) ) |
| 22 | 21 | 3impia | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐵 ≠ ∅ ) → 𝐴 ≼ ( 𝐴 ↑m 𝐵 ) ) |