This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An exponentiation law for infinite cardinals. Similar to Lemma 6.2 of Jech p. 43. Although this version of infmap avoids the axiom of choice, it requires the powerset of an infinite set to be well-orderable and so is usually not applicable. (Contributed by NM, 1-Oct-2004) (Revised by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infmap2 | |- ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) -> ( A ^m B ) ~~ { x | ( x C_ A /\ x ~~ B ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( B = (/) -> ( A ^m B ) = ( A ^m (/) ) ) |
|
| 2 | breq2 | |- ( B = (/) -> ( x ~~ B <-> x ~~ (/) ) ) |
|
| 3 | 2 | anbi2d | |- ( B = (/) -> ( ( x C_ A /\ x ~~ B ) <-> ( x C_ A /\ x ~~ (/) ) ) ) |
| 4 | 3 | abbidv | |- ( B = (/) -> { x | ( x C_ A /\ x ~~ B ) } = { x | ( x C_ A /\ x ~~ (/) ) } ) |
| 5 | 1 4 | breq12d | |- ( B = (/) -> ( ( A ^m B ) ~~ { x | ( x C_ A /\ x ~~ B ) } <-> ( A ^m (/) ) ~~ { x | ( x C_ A /\ x ~~ (/) ) } ) ) |
| 6 | simpl2 | |- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> B ~<_ A ) |
|
| 7 | reldom | |- Rel ~<_ |
|
| 8 | 7 | brrelex1i | |- ( B ~<_ A -> B e. _V ) |
| 9 | 6 8 | syl | |- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> B e. _V ) |
| 10 | 7 | brrelex2i | |- ( B ~<_ A -> A e. _V ) |
| 11 | 6 10 | syl | |- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> A e. _V ) |
| 12 | xpcomeng | |- ( ( B e. _V /\ A e. _V ) -> ( B X. A ) ~~ ( A X. B ) ) |
|
| 13 | 9 11 12 | syl2anc | |- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> ( B X. A ) ~~ ( A X. B ) ) |
| 14 | simpl3 | |- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> ( A ^m B ) e. dom card ) |
|
| 15 | simpr | |- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> B =/= (/) ) |
|
| 16 | mapdom3 | |- ( ( A e. _V /\ B e. _V /\ B =/= (/) ) -> A ~<_ ( A ^m B ) ) |
|
| 17 | 11 9 15 16 | syl3anc | |- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> A ~<_ ( A ^m B ) ) |
| 18 | numdom | |- ( ( ( A ^m B ) e. dom card /\ A ~<_ ( A ^m B ) ) -> A e. dom card ) |
|
| 19 | 14 17 18 | syl2anc | |- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> A e. dom card ) |
| 20 | simpl1 | |- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> _om ~<_ A ) |
|
| 21 | infxpabs | |- ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( B =/= (/) /\ B ~<_ A ) ) -> ( A X. B ) ~~ A ) |
|
| 22 | 19 20 15 6 21 | syl22anc | |- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> ( A X. B ) ~~ A ) |
| 23 | entr | |- ( ( ( B X. A ) ~~ ( A X. B ) /\ ( A X. B ) ~~ A ) -> ( B X. A ) ~~ A ) |
|
| 24 | 13 22 23 | syl2anc | |- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> ( B X. A ) ~~ A ) |
| 25 | ssenen | |- ( ( B X. A ) ~~ A -> { x | ( x C_ ( B X. A ) /\ x ~~ B ) } ~~ { x | ( x C_ A /\ x ~~ B ) } ) |
|
| 26 | 24 25 | syl | |- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> { x | ( x C_ ( B X. A ) /\ x ~~ B ) } ~~ { x | ( x C_ A /\ x ~~ B ) } ) |
| 27 | relen | |- Rel ~~ |
|
| 28 | 27 | brrelex1i | |- ( { x | ( x C_ ( B X. A ) /\ x ~~ B ) } ~~ { x | ( x C_ A /\ x ~~ B ) } -> { x | ( x C_ ( B X. A ) /\ x ~~ B ) } e. _V ) |
| 29 | 26 28 | syl | |- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> { x | ( x C_ ( B X. A ) /\ x ~~ B ) } e. _V ) |
| 30 | abid2 | |- { x | x e. ( A ^m B ) } = ( A ^m B ) |
|
| 31 | elmapi | |- ( x e. ( A ^m B ) -> x : B --> A ) |
|
| 32 | fssxp | |- ( x : B --> A -> x C_ ( B X. A ) ) |
|
| 33 | ffun | |- ( x : B --> A -> Fun x ) |
|
| 34 | vex | |- x e. _V |
|
| 35 | 34 | fundmen | |- ( Fun x -> dom x ~~ x ) |
| 36 | ensym | |- ( dom x ~~ x -> x ~~ dom x ) |
|
| 37 | 33 35 36 | 3syl | |- ( x : B --> A -> x ~~ dom x ) |
| 38 | fdm | |- ( x : B --> A -> dom x = B ) |
|
| 39 | 37 38 | breqtrd | |- ( x : B --> A -> x ~~ B ) |
| 40 | 32 39 | jca | |- ( x : B --> A -> ( x C_ ( B X. A ) /\ x ~~ B ) ) |
| 41 | 31 40 | syl | |- ( x e. ( A ^m B ) -> ( x C_ ( B X. A ) /\ x ~~ B ) ) |
| 42 | 41 | ss2abi | |- { x | x e. ( A ^m B ) } C_ { x | ( x C_ ( B X. A ) /\ x ~~ B ) } |
| 43 | 30 42 | eqsstrri | |- ( A ^m B ) C_ { x | ( x C_ ( B X. A ) /\ x ~~ B ) } |
| 44 | ssdomg | |- ( { x | ( x C_ ( B X. A ) /\ x ~~ B ) } e. _V -> ( ( A ^m B ) C_ { x | ( x C_ ( B X. A ) /\ x ~~ B ) } -> ( A ^m B ) ~<_ { x | ( x C_ ( B X. A ) /\ x ~~ B ) } ) ) |
|
| 45 | 29 43 44 | mpisyl | |- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> ( A ^m B ) ~<_ { x | ( x C_ ( B X. A ) /\ x ~~ B ) } ) |
| 46 | domentr | |- ( ( ( A ^m B ) ~<_ { x | ( x C_ ( B X. A ) /\ x ~~ B ) } /\ { x | ( x C_ ( B X. A ) /\ x ~~ B ) } ~~ { x | ( x C_ A /\ x ~~ B ) } ) -> ( A ^m B ) ~<_ { x | ( x C_ A /\ x ~~ B ) } ) |
|
| 47 | 45 26 46 | syl2anc | |- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> ( A ^m B ) ~<_ { x | ( x C_ A /\ x ~~ B ) } ) |
| 48 | ovex | |- ( A ^m B ) e. _V |
|
| 49 | 48 | mptex | |- ( f e. ( A ^m B ) |-> ran f ) e. _V |
| 50 | 49 | rnex | |- ran ( f e. ( A ^m B ) |-> ran f ) e. _V |
| 51 | ensym | |- ( x ~~ B -> B ~~ x ) |
|
| 52 | 51 | ad2antll | |- ( ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) /\ ( x C_ A /\ x ~~ B ) ) -> B ~~ x ) |
| 53 | bren | |- ( B ~~ x <-> E. f f : B -1-1-onto-> x ) |
|
| 54 | 52 53 | sylib | |- ( ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) /\ ( x C_ A /\ x ~~ B ) ) -> E. f f : B -1-1-onto-> x ) |
| 55 | f1of | |- ( f : B -1-1-onto-> x -> f : B --> x ) |
|
| 56 | 55 | adantl | |- ( ( ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) /\ ( x C_ A /\ x ~~ B ) ) /\ f : B -1-1-onto-> x ) -> f : B --> x ) |
| 57 | simplrl | |- ( ( ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) /\ ( x C_ A /\ x ~~ B ) ) /\ f : B -1-1-onto-> x ) -> x C_ A ) |
|
| 58 | 56 57 | fssd | |- ( ( ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) /\ ( x C_ A /\ x ~~ B ) ) /\ f : B -1-1-onto-> x ) -> f : B --> A ) |
| 59 | 11 9 | elmapd | |- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> ( f e. ( A ^m B ) <-> f : B --> A ) ) |
| 60 | 59 | ad2antrr | |- ( ( ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) /\ ( x C_ A /\ x ~~ B ) ) /\ f : B -1-1-onto-> x ) -> ( f e. ( A ^m B ) <-> f : B --> A ) ) |
| 61 | 58 60 | mpbird | |- ( ( ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) /\ ( x C_ A /\ x ~~ B ) ) /\ f : B -1-1-onto-> x ) -> f e. ( A ^m B ) ) |
| 62 | f1ofo | |- ( f : B -1-1-onto-> x -> f : B -onto-> x ) |
|
| 63 | forn | |- ( f : B -onto-> x -> ran f = x ) |
|
| 64 | 62 63 | syl | |- ( f : B -1-1-onto-> x -> ran f = x ) |
| 65 | 64 | adantl | |- ( ( ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) /\ ( x C_ A /\ x ~~ B ) ) /\ f : B -1-1-onto-> x ) -> ran f = x ) |
| 66 | 65 | eqcomd | |- ( ( ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) /\ ( x C_ A /\ x ~~ B ) ) /\ f : B -1-1-onto-> x ) -> x = ran f ) |
| 67 | 61 66 | jca | |- ( ( ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) /\ ( x C_ A /\ x ~~ B ) ) /\ f : B -1-1-onto-> x ) -> ( f e. ( A ^m B ) /\ x = ran f ) ) |
| 68 | 67 | ex | |- ( ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) /\ ( x C_ A /\ x ~~ B ) ) -> ( f : B -1-1-onto-> x -> ( f e. ( A ^m B ) /\ x = ran f ) ) ) |
| 69 | 68 | eximdv | |- ( ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) /\ ( x C_ A /\ x ~~ B ) ) -> ( E. f f : B -1-1-onto-> x -> E. f ( f e. ( A ^m B ) /\ x = ran f ) ) ) |
| 70 | 54 69 | mpd | |- ( ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) /\ ( x C_ A /\ x ~~ B ) ) -> E. f ( f e. ( A ^m B ) /\ x = ran f ) ) |
| 71 | df-rex | |- ( E. f e. ( A ^m B ) x = ran f <-> E. f ( f e. ( A ^m B ) /\ x = ran f ) ) |
|
| 72 | 70 71 | sylibr | |- ( ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) /\ ( x C_ A /\ x ~~ B ) ) -> E. f e. ( A ^m B ) x = ran f ) |
| 73 | 72 | ex | |- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> ( ( x C_ A /\ x ~~ B ) -> E. f e. ( A ^m B ) x = ran f ) ) |
| 74 | 73 | ss2abdv | |- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> { x | ( x C_ A /\ x ~~ B ) } C_ { x | E. f e. ( A ^m B ) x = ran f } ) |
| 75 | eqid | |- ( f e. ( A ^m B ) |-> ran f ) = ( f e. ( A ^m B ) |-> ran f ) |
|
| 76 | 75 | rnmpt | |- ran ( f e. ( A ^m B ) |-> ran f ) = { x | E. f e. ( A ^m B ) x = ran f } |
| 77 | 74 76 | sseqtrrdi | |- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> { x | ( x C_ A /\ x ~~ B ) } C_ ran ( f e. ( A ^m B ) |-> ran f ) ) |
| 78 | ssdomg | |- ( ran ( f e. ( A ^m B ) |-> ran f ) e. _V -> ( { x | ( x C_ A /\ x ~~ B ) } C_ ran ( f e. ( A ^m B ) |-> ran f ) -> { x | ( x C_ A /\ x ~~ B ) } ~<_ ran ( f e. ( A ^m B ) |-> ran f ) ) ) |
|
| 79 | 50 77 78 | mpsyl | |- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> { x | ( x C_ A /\ x ~~ B ) } ~<_ ran ( f e. ( A ^m B ) |-> ran f ) ) |
| 80 | vex | |- f e. _V |
|
| 81 | 80 | rnex | |- ran f e. _V |
| 82 | 81 | rgenw | |- A. f e. ( A ^m B ) ran f e. _V |
| 83 | 75 | fnmpt | |- ( A. f e. ( A ^m B ) ran f e. _V -> ( f e. ( A ^m B ) |-> ran f ) Fn ( A ^m B ) ) |
| 84 | 82 83 | mp1i | |- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> ( f e. ( A ^m B ) |-> ran f ) Fn ( A ^m B ) ) |
| 85 | dffn4 | |- ( ( f e. ( A ^m B ) |-> ran f ) Fn ( A ^m B ) <-> ( f e. ( A ^m B ) |-> ran f ) : ( A ^m B ) -onto-> ran ( f e. ( A ^m B ) |-> ran f ) ) |
|
| 86 | 84 85 | sylib | |- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> ( f e. ( A ^m B ) |-> ran f ) : ( A ^m B ) -onto-> ran ( f e. ( A ^m B ) |-> ran f ) ) |
| 87 | fodomnum | |- ( ( A ^m B ) e. dom card -> ( ( f e. ( A ^m B ) |-> ran f ) : ( A ^m B ) -onto-> ran ( f e. ( A ^m B ) |-> ran f ) -> ran ( f e. ( A ^m B ) |-> ran f ) ~<_ ( A ^m B ) ) ) |
|
| 88 | 14 86 87 | sylc | |- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> ran ( f e. ( A ^m B ) |-> ran f ) ~<_ ( A ^m B ) ) |
| 89 | domtr | |- ( ( { x | ( x C_ A /\ x ~~ B ) } ~<_ ran ( f e. ( A ^m B ) |-> ran f ) /\ ran ( f e. ( A ^m B ) |-> ran f ) ~<_ ( A ^m B ) ) -> { x | ( x C_ A /\ x ~~ B ) } ~<_ ( A ^m B ) ) |
|
| 90 | 79 88 89 | syl2anc | |- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> { x | ( x C_ A /\ x ~~ B ) } ~<_ ( A ^m B ) ) |
| 91 | sbth | |- ( ( ( A ^m B ) ~<_ { x | ( x C_ A /\ x ~~ B ) } /\ { x | ( x C_ A /\ x ~~ B ) } ~<_ ( A ^m B ) ) -> ( A ^m B ) ~~ { x | ( x C_ A /\ x ~~ B ) } ) |
|
| 92 | 47 90 91 | syl2anc | |- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> ( A ^m B ) ~~ { x | ( x C_ A /\ x ~~ B ) } ) |
| 93 | 7 | brrelex2i | |- ( _om ~<_ A -> A e. _V ) |
| 94 | 93 | 3ad2ant1 | |- ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) -> A e. _V ) |
| 95 | map0e | |- ( A e. _V -> ( A ^m (/) ) = 1o ) |
|
| 96 | 94 95 | syl | |- ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) -> ( A ^m (/) ) = 1o ) |
| 97 | 1oex | |- 1o e. _V |
|
| 98 | 97 | enref | |- 1o ~~ 1o |
| 99 | df-sn | |- { (/) } = { x | x = (/) } |
|
| 100 | df1o2 | |- 1o = { (/) } |
|
| 101 | en0 | |- ( x ~~ (/) <-> x = (/) ) |
|
| 102 | 101 | anbi2i | |- ( ( x C_ A /\ x ~~ (/) ) <-> ( x C_ A /\ x = (/) ) ) |
| 103 | 0ss | |- (/) C_ A |
|
| 104 | sseq1 | |- ( x = (/) -> ( x C_ A <-> (/) C_ A ) ) |
|
| 105 | 103 104 | mpbiri | |- ( x = (/) -> x C_ A ) |
| 106 | 105 | pm4.71ri | |- ( x = (/) <-> ( x C_ A /\ x = (/) ) ) |
| 107 | 102 106 | bitr4i | |- ( ( x C_ A /\ x ~~ (/) ) <-> x = (/) ) |
| 108 | 107 | abbii | |- { x | ( x C_ A /\ x ~~ (/) ) } = { x | x = (/) } |
| 109 | 99 100 108 | 3eqtr4ri | |- { x | ( x C_ A /\ x ~~ (/) ) } = 1o |
| 110 | 98 109 | breqtrri | |- 1o ~~ { x | ( x C_ A /\ x ~~ (/) ) } |
| 111 | 96 110 | eqbrtrdi | |- ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) -> ( A ^m (/) ) ~~ { x | ( x C_ A /\ x ~~ (/) ) } ) |
| 112 | 5 92 111 | pm2.61ne | |- ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) -> ( A ^m B ) ~~ { x | ( x C_ A /\ x ~~ B ) } ) |