This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An exponentiation law for infinite cardinals. Similar to Lemma 6.2 of Jech p. 43. (Contributed by NM, 1-Oct-2004) (Proof shortened by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infmap | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ↑m 𝐵 ) ≈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex | ⊢ ( 𝐴 ↑m 𝐵 ) ∈ V | |
| 2 | numth3 | ⊢ ( ( 𝐴 ↑m 𝐵 ) ∈ V → ( 𝐴 ↑m 𝐵 ) ∈ dom card ) | |
| 3 | 1 2 | ax-mp | ⊢ ( 𝐴 ↑m 𝐵 ) ∈ dom card |
| 4 | infmap2 | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) → ( 𝐴 ↑m 𝐵 ) ≈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ) | |
| 5 | 3 4 | mp3an3 | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ↑m 𝐵 ) ≈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ) |