This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absorption law for multiplication with an infinite cardinal. (Contributed by NM, 30-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infxpabs | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴 ) ) → ( 𝐴 × 𝐵 ) ≈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infxpdom | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 × 𝐵 ) ≼ 𝐴 ) | |
| 2 | 1 | 3expa | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 × 𝐵 ) ≼ 𝐴 ) |
| 3 | 2 | adantrl | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴 ) ) → ( 𝐴 × 𝐵 ) ≼ 𝐴 ) |
| 4 | simpll | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴 ) ) → 𝐴 ∈ dom card ) | |
| 5 | numdom | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ≼ 𝐴 ) → 𝐵 ∈ dom card ) | |
| 6 | 5 | ad2ant2rl | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴 ) ) → 𝐵 ∈ dom card ) |
| 7 | simprl | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴 ) ) → 𝐵 ≠ ∅ ) | |
| 8 | xpdom3 | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ 𝐵 ≠ ∅ ) → 𝐴 ≼ ( 𝐴 × 𝐵 ) ) | |
| 9 | 4 6 7 8 | syl3anc | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴 ) ) → 𝐴 ≼ ( 𝐴 × 𝐵 ) ) |
| 10 | sbth | ⊢ ( ( ( 𝐴 × 𝐵 ) ≼ 𝐴 ∧ 𝐴 ≼ ( 𝐴 × 𝐵 ) ) → ( 𝐴 × 𝐵 ) ≈ 𝐴 ) | |
| 11 | 3 9 10 | syl2anc | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴 ) ) → ( 𝐴 × 𝐵 ) ≈ 𝐴 ) |