This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equinumerosity of equinumerous subsets of a set. (Contributed by NM, 30-Sep-2004) (Revised by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssenen | ⊢ ( 𝐴 ≈ 𝐵 → { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐶 ) } ≈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐵 ∧ 𝑥 ≈ 𝐶 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren | ⊢ ( 𝐴 ≈ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 2 | f1odm | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → dom 𝑓 = 𝐴 ) | |
| 3 | vex | ⊢ 𝑓 ∈ V | |
| 4 | 3 | dmex | ⊢ dom 𝑓 ∈ V |
| 5 | 2 4 | eqeltrrdi | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝐴 ∈ V ) |
| 6 | pwexg | ⊢ ( 𝐴 ∈ V → 𝒫 𝐴 ∈ V ) | |
| 7 | inex1g | ⊢ ( 𝒫 𝐴 ∈ V → ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ∈ V ) | |
| 8 | 5 6 7 | 3syl | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ∈ V ) |
| 9 | f1ofo | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 : 𝐴 –onto→ 𝐵 ) | |
| 10 | forn | ⊢ ( 𝑓 : 𝐴 –onto→ 𝐵 → ran 𝑓 = 𝐵 ) | |
| 11 | 9 10 | syl | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ran 𝑓 = 𝐵 ) |
| 12 | 3 | rnex | ⊢ ran 𝑓 ∈ V |
| 13 | 11 12 | eqeltrrdi | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝐵 ∈ V ) |
| 14 | pwexg | ⊢ ( 𝐵 ∈ V → 𝒫 𝐵 ∈ V ) | |
| 15 | inex1g | ⊢ ( 𝒫 𝐵 ∈ V → ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ∈ V ) | |
| 16 | 13 14 15 | 3syl | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ∈ V ) |
| 17 | f1of1 | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 : 𝐴 –1-1→ 𝐵 ) | |
| 18 | 17 | adantr | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) → 𝑓 : 𝐴 –1-1→ 𝐵 ) |
| 19 | 13 | adantr | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) → 𝐵 ∈ V ) |
| 20 | simpr | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ⊆ 𝐴 ) | |
| 21 | vex | ⊢ 𝑦 ∈ V | |
| 22 | 21 | a1i | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ∈ V ) |
| 23 | f1imaen2g | ⊢ ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝐵 ∈ V ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ∈ V ) ) → ( 𝑓 “ 𝑦 ) ≈ 𝑦 ) | |
| 24 | 18 19 20 22 23 | syl22anc | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) → ( 𝑓 “ 𝑦 ) ≈ 𝑦 ) |
| 25 | entr | ⊢ ( ( ( 𝑓 “ 𝑦 ) ≈ 𝑦 ∧ 𝑦 ≈ 𝐶 ) → ( 𝑓 “ 𝑦 ) ≈ 𝐶 ) | |
| 26 | 24 25 | sylan | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝑦 ≈ 𝐶 ) → ( 𝑓 “ 𝑦 ) ≈ 𝐶 ) |
| 27 | 26 | expl | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ 𝐶 ) → ( 𝑓 “ 𝑦 ) ≈ 𝐶 ) ) |
| 28 | imassrn | ⊢ ( 𝑓 “ 𝑦 ) ⊆ ran 𝑓 | |
| 29 | 28 10 | sseqtrid | ⊢ ( 𝑓 : 𝐴 –onto→ 𝐵 → ( 𝑓 “ 𝑦 ) ⊆ 𝐵 ) |
| 30 | 9 29 | syl | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( 𝑓 “ 𝑦 ) ⊆ 𝐵 ) |
| 31 | 27 30 | jctild | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ 𝐶 ) → ( ( 𝑓 “ 𝑦 ) ⊆ 𝐵 ∧ ( 𝑓 “ 𝑦 ) ≈ 𝐶 ) ) ) |
| 32 | elin | ⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) | |
| 33 | 21 | elpw | ⊢ ( 𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴 ) |
| 34 | breq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≈ 𝐶 ↔ 𝑦 ≈ 𝐶 ) ) | |
| 35 | 21 34 | elab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ↔ 𝑦 ≈ 𝐶 ) |
| 36 | 33 35 | anbi12i | ⊢ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ 𝐶 ) ) |
| 37 | 32 36 | bitri | ⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ 𝐶 ) ) |
| 38 | elin | ⊢ ( ( 𝑓 “ 𝑦 ) ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( ( 𝑓 “ 𝑦 ) ∈ 𝒫 𝐵 ∧ ( 𝑓 “ 𝑦 ) ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) | |
| 39 | 3 | imaex | ⊢ ( 𝑓 “ 𝑦 ) ∈ V |
| 40 | 39 | elpw | ⊢ ( ( 𝑓 “ 𝑦 ) ∈ 𝒫 𝐵 ↔ ( 𝑓 “ 𝑦 ) ⊆ 𝐵 ) |
| 41 | breq1 | ⊢ ( 𝑥 = ( 𝑓 “ 𝑦 ) → ( 𝑥 ≈ 𝐶 ↔ ( 𝑓 “ 𝑦 ) ≈ 𝐶 ) ) | |
| 42 | 39 41 | elab | ⊢ ( ( 𝑓 “ 𝑦 ) ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ↔ ( 𝑓 “ 𝑦 ) ≈ 𝐶 ) |
| 43 | 40 42 | anbi12i | ⊢ ( ( ( 𝑓 “ 𝑦 ) ∈ 𝒫 𝐵 ∧ ( 𝑓 “ 𝑦 ) ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( ( 𝑓 “ 𝑦 ) ⊆ 𝐵 ∧ ( 𝑓 “ 𝑦 ) ≈ 𝐶 ) ) |
| 44 | 38 43 | bitri | ⊢ ( ( 𝑓 “ 𝑦 ) ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( ( 𝑓 “ 𝑦 ) ⊆ 𝐵 ∧ ( 𝑓 “ 𝑦 ) ≈ 𝐶 ) ) |
| 45 | 31 37 44 | 3imtr4g | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( 𝑦 ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) → ( 𝑓 “ 𝑦 ) ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) ) |
| 46 | f1ocnv | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 ) | |
| 47 | f1of1 | ⊢ ( ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝑓 : 𝐵 –1-1→ 𝐴 ) | |
| 48 | f1f1orn | ⊢ ( ◡ 𝑓 : 𝐵 –1-1→ 𝐴 → ◡ 𝑓 : 𝐵 –1-1-onto→ ran ◡ 𝑓 ) | |
| 49 | f1of1 | ⊢ ( ◡ 𝑓 : 𝐵 –1-1-onto→ ran ◡ 𝑓 → ◡ 𝑓 : 𝐵 –1-1→ ran ◡ 𝑓 ) | |
| 50 | 47 48 49 | 3syl | ⊢ ( ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝑓 : 𝐵 –1-1→ ran ◡ 𝑓 ) |
| 51 | vex | ⊢ 𝑧 ∈ V | |
| 52 | 51 | f1imaen | ⊢ ( ( ◡ 𝑓 : 𝐵 –1-1→ ran ◡ 𝑓 ∧ 𝑧 ⊆ 𝐵 ) → ( ◡ 𝑓 “ 𝑧 ) ≈ 𝑧 ) |
| 53 | 50 52 | sylan | ⊢ ( ( ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝑧 ⊆ 𝐵 ) → ( ◡ 𝑓 “ 𝑧 ) ≈ 𝑧 ) |
| 54 | entr | ⊢ ( ( ( ◡ 𝑓 “ 𝑧 ) ≈ 𝑧 ∧ 𝑧 ≈ 𝐶 ) → ( ◡ 𝑓 “ 𝑧 ) ≈ 𝐶 ) | |
| 55 | 53 54 | sylan | ⊢ ( ( ( ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑧 ≈ 𝐶 ) → ( ◡ 𝑓 “ 𝑧 ) ≈ 𝐶 ) |
| 56 | 55 | expl | ⊢ ( ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ( ( 𝑧 ⊆ 𝐵 ∧ 𝑧 ≈ 𝐶 ) → ( ◡ 𝑓 “ 𝑧 ) ≈ 𝐶 ) ) |
| 57 | f1ofo | ⊢ ( ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝑓 : 𝐵 –onto→ 𝐴 ) | |
| 58 | imassrn | ⊢ ( ◡ 𝑓 “ 𝑧 ) ⊆ ran ◡ 𝑓 | |
| 59 | forn | ⊢ ( ◡ 𝑓 : 𝐵 –onto→ 𝐴 → ran ◡ 𝑓 = 𝐴 ) | |
| 60 | 58 59 | sseqtrid | ⊢ ( ◡ 𝑓 : 𝐵 –onto→ 𝐴 → ( ◡ 𝑓 “ 𝑧 ) ⊆ 𝐴 ) |
| 61 | 57 60 | syl | ⊢ ( ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ( ◡ 𝑓 “ 𝑧 ) ⊆ 𝐴 ) |
| 62 | 56 61 | jctild | ⊢ ( ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ( ( 𝑧 ⊆ 𝐵 ∧ 𝑧 ≈ 𝐶 ) → ( ( ◡ 𝑓 “ 𝑧 ) ⊆ 𝐴 ∧ ( ◡ 𝑓 “ 𝑧 ) ≈ 𝐶 ) ) ) |
| 63 | 46 62 | syl | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ( 𝑧 ⊆ 𝐵 ∧ 𝑧 ≈ 𝐶 ) → ( ( ◡ 𝑓 “ 𝑧 ) ⊆ 𝐴 ∧ ( ◡ 𝑓 “ 𝑧 ) ≈ 𝐶 ) ) ) |
| 64 | elin | ⊢ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( 𝑧 ∈ 𝒫 𝐵 ∧ 𝑧 ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) | |
| 65 | 51 | elpw | ⊢ ( 𝑧 ∈ 𝒫 𝐵 ↔ 𝑧 ⊆ 𝐵 ) |
| 66 | breq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ≈ 𝐶 ↔ 𝑧 ≈ 𝐶 ) ) | |
| 67 | 51 66 | elab | ⊢ ( 𝑧 ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ↔ 𝑧 ≈ 𝐶 ) |
| 68 | 65 67 | anbi12i | ⊢ ( ( 𝑧 ∈ 𝒫 𝐵 ∧ 𝑧 ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( 𝑧 ⊆ 𝐵 ∧ 𝑧 ≈ 𝐶 ) ) |
| 69 | 64 68 | bitri | ⊢ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( 𝑧 ⊆ 𝐵 ∧ 𝑧 ≈ 𝐶 ) ) |
| 70 | elin | ⊢ ( ( ◡ 𝑓 “ 𝑧 ) ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( ( ◡ 𝑓 “ 𝑧 ) ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 “ 𝑧 ) ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) | |
| 71 | 3 | cnvex | ⊢ ◡ 𝑓 ∈ V |
| 72 | 71 | imaex | ⊢ ( ◡ 𝑓 “ 𝑧 ) ∈ V |
| 73 | 72 | elpw | ⊢ ( ( ◡ 𝑓 “ 𝑧 ) ∈ 𝒫 𝐴 ↔ ( ◡ 𝑓 “ 𝑧 ) ⊆ 𝐴 ) |
| 74 | breq1 | ⊢ ( 𝑥 = ( ◡ 𝑓 “ 𝑧 ) → ( 𝑥 ≈ 𝐶 ↔ ( ◡ 𝑓 “ 𝑧 ) ≈ 𝐶 ) ) | |
| 75 | 72 74 | elab | ⊢ ( ( ◡ 𝑓 “ 𝑧 ) ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ↔ ( ◡ 𝑓 “ 𝑧 ) ≈ 𝐶 ) |
| 76 | 73 75 | anbi12i | ⊢ ( ( ( ◡ 𝑓 “ 𝑧 ) ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 “ 𝑧 ) ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( ( ◡ 𝑓 “ 𝑧 ) ⊆ 𝐴 ∧ ( ◡ 𝑓 “ 𝑧 ) ≈ 𝐶 ) ) |
| 77 | 70 76 | bitri | ⊢ ( ( ◡ 𝑓 “ 𝑧 ) ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( ( ◡ 𝑓 “ 𝑧 ) ⊆ 𝐴 ∧ ( ◡ 𝑓 “ 𝑧 ) ≈ 𝐶 ) ) |
| 78 | 63 69 77 | 3imtr4g | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( 𝑧 ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) → ( ◡ 𝑓 “ 𝑧 ) ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) ) |
| 79 | simpl | ⊢ ( ( 𝑧 ∈ 𝒫 𝐵 ∧ 𝑧 ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) → 𝑧 ∈ 𝒫 𝐵 ) | |
| 80 | 79 | elpwid | ⊢ ( ( 𝑧 ∈ 𝒫 𝐵 ∧ 𝑧 ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) → 𝑧 ⊆ 𝐵 ) |
| 81 | 64 80 | sylbi | ⊢ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) → 𝑧 ⊆ 𝐵 ) |
| 82 | imaeq2 | ⊢ ( 𝑦 = ( ◡ 𝑓 “ 𝑧 ) → ( 𝑓 “ 𝑦 ) = ( 𝑓 “ ( ◡ 𝑓 “ 𝑧 ) ) ) | |
| 83 | f1orel | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → Rel 𝑓 ) | |
| 84 | dfrel2 | ⊢ ( Rel 𝑓 ↔ ◡ ◡ 𝑓 = 𝑓 ) | |
| 85 | 83 84 | sylib | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ◡ ◡ 𝑓 = 𝑓 ) |
| 86 | 85 | imaeq1d | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ◡ ◡ 𝑓 “ ( ◡ 𝑓 “ 𝑧 ) ) = ( 𝑓 “ ( ◡ 𝑓 “ 𝑧 ) ) ) |
| 87 | 86 | adantr | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑧 ⊆ 𝐵 ) → ( ◡ ◡ 𝑓 “ ( ◡ 𝑓 “ 𝑧 ) ) = ( 𝑓 “ ( ◡ 𝑓 “ 𝑧 ) ) ) |
| 88 | 46 47 | syl | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝑓 : 𝐵 –1-1→ 𝐴 ) |
| 89 | f1imacnv | ⊢ ( ( ◡ 𝑓 : 𝐵 –1-1→ 𝐴 ∧ 𝑧 ⊆ 𝐵 ) → ( ◡ ◡ 𝑓 “ ( ◡ 𝑓 “ 𝑧 ) ) = 𝑧 ) | |
| 90 | 88 89 | sylan | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑧 ⊆ 𝐵 ) → ( ◡ ◡ 𝑓 “ ( ◡ 𝑓 “ 𝑧 ) ) = 𝑧 ) |
| 91 | 87 90 | eqtr3d | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑧 ⊆ 𝐵 ) → ( 𝑓 “ ( ◡ 𝑓 “ 𝑧 ) ) = 𝑧 ) |
| 92 | 82 91 | sylan9eqr | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑦 = ( ◡ 𝑓 “ 𝑧 ) ) → ( 𝑓 “ 𝑦 ) = 𝑧 ) |
| 93 | 92 | eqcomd | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑦 = ( ◡ 𝑓 “ 𝑧 ) ) → 𝑧 = ( 𝑓 “ 𝑦 ) ) |
| 94 | 93 | ex | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑧 ⊆ 𝐵 ) → ( 𝑦 = ( ◡ 𝑓 “ 𝑧 ) → 𝑧 = ( 𝑓 “ 𝑦 ) ) ) |
| 95 | 81 94 | sylan2 | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑧 ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) → ( 𝑦 = ( ◡ 𝑓 “ 𝑧 ) → 𝑧 = ( 𝑓 “ 𝑦 ) ) ) |
| 96 | 95 | adantrl | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ∧ 𝑧 ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) ) → ( 𝑦 = ( ◡ 𝑓 “ 𝑧 ) → 𝑧 = ( 𝑓 “ 𝑦 ) ) ) |
| 97 | simpl | ⊢ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) → 𝑦 ∈ 𝒫 𝐴 ) | |
| 98 | 97 | elpwid | ⊢ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) → 𝑦 ⊆ 𝐴 ) |
| 99 | 32 98 | sylbi | ⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) → 𝑦 ⊆ 𝐴 ) |
| 100 | imaeq2 | ⊢ ( 𝑧 = ( 𝑓 “ 𝑦 ) → ( ◡ 𝑓 “ 𝑧 ) = ( ◡ 𝑓 “ ( 𝑓 “ 𝑦 ) ) ) | |
| 101 | f1imacnv | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) → ( ◡ 𝑓 “ ( 𝑓 “ 𝑦 ) ) = 𝑦 ) | |
| 102 | 17 101 | sylan | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) → ( ◡ 𝑓 “ ( 𝑓 “ 𝑦 ) ) = 𝑦 ) |
| 103 | 100 102 | sylan9eqr | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝑧 = ( 𝑓 “ 𝑦 ) ) → ( ◡ 𝑓 “ 𝑧 ) = 𝑦 ) |
| 104 | 103 | eqcomd | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝑧 = ( 𝑓 “ 𝑦 ) ) → 𝑦 = ( ◡ 𝑓 “ 𝑧 ) ) |
| 105 | 104 | ex | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) → ( 𝑧 = ( 𝑓 “ 𝑦 ) → 𝑦 = ( ◡ 𝑓 “ 𝑧 ) ) ) |
| 106 | 99 105 | sylan2 | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) → ( 𝑧 = ( 𝑓 “ 𝑦 ) → 𝑦 = ( ◡ 𝑓 “ 𝑧 ) ) ) |
| 107 | 106 | adantrr | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ∧ 𝑧 ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) ) → ( 𝑧 = ( 𝑓 “ 𝑦 ) → 𝑦 = ( ◡ 𝑓 “ 𝑧 ) ) ) |
| 108 | 96 107 | impbid | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ∧ 𝑧 ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) ) → ( 𝑦 = ( ◡ 𝑓 “ 𝑧 ) ↔ 𝑧 = ( 𝑓 “ 𝑦 ) ) ) |
| 109 | 108 | ex | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ( 𝑦 ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ∧ 𝑧 ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) → ( 𝑦 = ( ◡ 𝑓 “ 𝑧 ) ↔ 𝑧 = ( 𝑓 “ 𝑦 ) ) ) ) |
| 110 | 8 16 45 78 109 | en3d | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ≈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) |
| 111 | 110 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ≈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) |
| 112 | 1 111 | sylbi | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ≈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) |
| 113 | df-pw | ⊢ 𝒫 𝐴 = { 𝑥 ∣ 𝑥 ⊆ 𝐴 } | |
| 114 | 113 | ineq1i | ⊢ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) = ( { 𝑥 ∣ 𝑥 ⊆ 𝐴 } ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) |
| 115 | inab | ⊢ ( { 𝑥 ∣ 𝑥 ⊆ 𝐴 } ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) = { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐶 ) } | |
| 116 | 114 115 | eqtri | ⊢ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) = { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐶 ) } |
| 117 | df-pw | ⊢ 𝒫 𝐵 = { 𝑥 ∣ 𝑥 ⊆ 𝐵 } | |
| 118 | 117 | ineq1i | ⊢ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) = ( { 𝑥 ∣ 𝑥 ⊆ 𝐵 } ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) |
| 119 | inab | ⊢ ( { 𝑥 ∣ 𝑥 ⊆ 𝐵 } ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) = { 𝑥 ∣ ( 𝑥 ⊆ 𝐵 ∧ 𝑥 ≈ 𝐶 ) } | |
| 120 | 118 119 | eqtri | ⊢ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) = { 𝑥 ∣ ( 𝑥 ⊆ 𝐵 ∧ 𝑥 ≈ 𝐶 ) } |
| 121 | 112 116 120 | 3brtr3g | ⊢ ( 𝐴 ≈ 𝐵 → { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐶 ) } ≈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐵 ∧ 𝑥 ≈ 𝐶 ) } ) |