This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinality of an infinite set does not change after subtracting a strictly smaller one. Example in Enderton p. 164. (Contributed by NM, 22-Oct-2004) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infdif | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐴 ∖ 𝐵 ) ≈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → 𝐴 ∈ dom card ) | |
| 2 | difss | ⊢ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 | |
| 3 | ssdomg | ⊢ ( 𝐴 ∈ dom card → ( ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 → ( 𝐴 ∖ 𝐵 ) ≼ 𝐴 ) ) | |
| 4 | 1 2 3 | mpisyl | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐴 ∖ 𝐵 ) ≼ 𝐴 ) |
| 5 | sdomdom | ⊢ ( 𝐵 ≺ 𝐴 → 𝐵 ≼ 𝐴 ) | |
| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → 𝐵 ≼ 𝐴 ) |
| 7 | numdom | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ≼ 𝐴 ) → 𝐵 ∈ dom card ) | |
| 8 | 1 6 7 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → 𝐵 ∈ dom card ) |
| 9 | unnum | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ) → ( 𝐴 ∪ 𝐵 ) ∈ dom card ) | |
| 10 | 1 8 9 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐴 ∪ 𝐵 ) ∈ dom card ) |
| 11 | ssun1 | ⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 12 | ssdomg | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ dom card → ( 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) → 𝐴 ≼ ( 𝐴 ∪ 𝐵 ) ) ) | |
| 13 | 10 11 12 | mpisyl | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → 𝐴 ≼ ( 𝐴 ∪ 𝐵 ) ) |
| 14 | undif1 | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) = ( 𝐴 ∪ 𝐵 ) | |
| 15 | ssnum | ⊢ ( ( 𝐴 ∈ dom card ∧ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ) → ( 𝐴 ∖ 𝐵 ) ∈ dom card ) | |
| 16 | 1 2 15 | sylancl | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐴 ∖ 𝐵 ) ∈ dom card ) |
| 17 | undjudom | ⊢ ( ( ( 𝐴 ∖ 𝐵 ) ∈ dom card ∧ 𝐵 ∈ dom card ) → ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ) | |
| 18 | 16 8 17 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ) |
| 19 | 14 18 | eqbrtrrid | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐴 ∪ 𝐵 ) ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ) |
| 20 | domtr | ⊢ ( ( 𝐴 ≼ ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∪ 𝐵 ) ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ) → 𝐴 ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ) | |
| 21 | 13 19 20 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → 𝐴 ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ) |
| 22 | simp3 | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → 𝐵 ≺ 𝐴 ) | |
| 23 | sdomdom | ⊢ ( ( 𝐴 ∖ 𝐵 ) ≺ 𝐵 → ( 𝐴 ∖ 𝐵 ) ≼ 𝐵 ) | |
| 24 | relsdom | ⊢ Rel ≺ | |
| 25 | 24 | brrelex2i | ⊢ ( ( 𝐴 ∖ 𝐵 ) ≺ 𝐵 → 𝐵 ∈ V ) |
| 26 | djudom1 | ⊢ ( ( ( 𝐴 ∖ 𝐵 ) ≼ 𝐵 ∧ 𝐵 ∈ V ) → ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ≼ ( 𝐵 ⊔ 𝐵 ) ) | |
| 27 | 23 25 26 | syl2anc | ⊢ ( ( 𝐴 ∖ 𝐵 ) ≺ 𝐵 → ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ≼ ( 𝐵 ⊔ 𝐵 ) ) |
| 28 | domtr | ⊢ ( ( 𝐴 ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ∧ ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ≼ ( 𝐵 ⊔ 𝐵 ) ) → 𝐴 ≼ ( 𝐵 ⊔ 𝐵 ) ) | |
| 29 | 28 | ex | ⊢ ( 𝐴 ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) → ( ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ≼ ( 𝐵 ⊔ 𝐵 ) → 𝐴 ≼ ( 𝐵 ⊔ 𝐵 ) ) ) |
| 30 | 21 29 | syl | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ≼ ( 𝐵 ⊔ 𝐵 ) → 𝐴 ≼ ( 𝐵 ⊔ 𝐵 ) ) ) |
| 31 | simp2 | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ω ≼ 𝐴 ) | |
| 32 | domtr | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ≼ ( 𝐵 ⊔ 𝐵 ) ) → ω ≼ ( 𝐵 ⊔ 𝐵 ) ) | |
| 33 | 32 | ex | ⊢ ( ω ≼ 𝐴 → ( 𝐴 ≼ ( 𝐵 ⊔ 𝐵 ) → ω ≼ ( 𝐵 ⊔ 𝐵 ) ) ) |
| 34 | 31 33 | syl | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐴 ≼ ( 𝐵 ⊔ 𝐵 ) → ω ≼ ( 𝐵 ⊔ 𝐵 ) ) ) |
| 35 | djuinf | ⊢ ( ω ≼ 𝐵 ↔ ω ≼ ( 𝐵 ⊔ 𝐵 ) ) | |
| 36 | 35 | biimpri | ⊢ ( ω ≼ ( 𝐵 ⊔ 𝐵 ) → ω ≼ 𝐵 ) |
| 37 | domrefg | ⊢ ( 𝐵 ∈ dom card → 𝐵 ≼ 𝐵 ) | |
| 38 | infdjuabs | ⊢ ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ∧ 𝐵 ≼ 𝐵 ) → ( 𝐵 ⊔ 𝐵 ) ≈ 𝐵 ) | |
| 39 | 38 | 3com23 | ⊢ ( ( 𝐵 ∈ dom card ∧ 𝐵 ≼ 𝐵 ∧ ω ≼ 𝐵 ) → ( 𝐵 ⊔ 𝐵 ) ≈ 𝐵 ) |
| 40 | 39 | 3expia | ⊢ ( ( 𝐵 ∈ dom card ∧ 𝐵 ≼ 𝐵 ) → ( ω ≼ 𝐵 → ( 𝐵 ⊔ 𝐵 ) ≈ 𝐵 ) ) |
| 41 | 37 40 | mpdan | ⊢ ( 𝐵 ∈ dom card → ( ω ≼ 𝐵 → ( 𝐵 ⊔ 𝐵 ) ≈ 𝐵 ) ) |
| 42 | 8 36 41 | syl2im | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( ω ≼ ( 𝐵 ⊔ 𝐵 ) → ( 𝐵 ⊔ 𝐵 ) ≈ 𝐵 ) ) |
| 43 | 34 42 | syld | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐴 ≼ ( 𝐵 ⊔ 𝐵 ) → ( 𝐵 ⊔ 𝐵 ) ≈ 𝐵 ) ) |
| 44 | domen2 | ⊢ ( ( 𝐵 ⊔ 𝐵 ) ≈ 𝐵 → ( 𝐴 ≼ ( 𝐵 ⊔ 𝐵 ) ↔ 𝐴 ≼ 𝐵 ) ) | |
| 45 | 44 | biimpcd | ⊢ ( 𝐴 ≼ ( 𝐵 ⊔ 𝐵 ) → ( ( 𝐵 ⊔ 𝐵 ) ≈ 𝐵 → 𝐴 ≼ 𝐵 ) ) |
| 46 | 43 45 | sylcom | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐴 ≼ ( 𝐵 ⊔ 𝐵 ) → 𝐴 ≼ 𝐵 ) ) |
| 47 | 30 46 | syld | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ≼ ( 𝐵 ⊔ 𝐵 ) → 𝐴 ≼ 𝐵 ) ) |
| 48 | domnsym | ⊢ ( 𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴 ) | |
| 49 | 27 47 48 | syl56 | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( ( 𝐴 ∖ 𝐵 ) ≺ 𝐵 → ¬ 𝐵 ≺ 𝐴 ) ) |
| 50 | 22 49 | mt2d | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ¬ ( 𝐴 ∖ 𝐵 ) ≺ 𝐵 ) |
| 51 | domtri2 | ⊢ ( ( 𝐵 ∈ dom card ∧ ( 𝐴 ∖ 𝐵 ) ∈ dom card ) → ( 𝐵 ≼ ( 𝐴 ∖ 𝐵 ) ↔ ¬ ( 𝐴 ∖ 𝐵 ) ≺ 𝐵 ) ) | |
| 52 | 8 16 51 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐵 ≼ ( 𝐴 ∖ 𝐵 ) ↔ ¬ ( 𝐴 ∖ 𝐵 ) ≺ 𝐵 ) ) |
| 53 | 50 52 | mpbird | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → 𝐵 ≼ ( 𝐴 ∖ 𝐵 ) ) |
| 54 | 1 | difexd | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐴 ∖ 𝐵 ) ∈ V ) |
| 55 | djudom2 | ⊢ ( ( 𝐵 ≼ ( 𝐴 ∖ 𝐵 ) ∧ ( 𝐴 ∖ 𝐵 ) ∈ V ) → ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ) | |
| 56 | 53 54 55 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ) |
| 57 | domtr | ⊢ ( ( 𝐴 ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ∧ ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ) → 𝐴 ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ) | |
| 58 | 21 56 57 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → 𝐴 ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ) |
| 59 | domtr | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ) → ω ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ) | |
| 60 | 31 58 59 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ω ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ) |
| 61 | djuinf | ⊢ ( ω ≼ ( 𝐴 ∖ 𝐵 ) ↔ ω ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ) | |
| 62 | 60 61 | sylibr | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ω ≼ ( 𝐴 ∖ 𝐵 ) ) |
| 63 | domrefg | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∈ dom card → ( 𝐴 ∖ 𝐵 ) ≼ ( 𝐴 ∖ 𝐵 ) ) | |
| 64 | 16 63 | syl | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐴 ∖ 𝐵 ) ≼ ( 𝐴 ∖ 𝐵 ) ) |
| 65 | infdjuabs | ⊢ ( ( ( 𝐴 ∖ 𝐵 ) ∈ dom card ∧ ω ≼ ( 𝐴 ∖ 𝐵 ) ∧ ( 𝐴 ∖ 𝐵 ) ≼ ( 𝐴 ∖ 𝐵 ) ) → ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ≈ ( 𝐴 ∖ 𝐵 ) ) | |
| 66 | 16 62 64 65 | syl3anc | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ≈ ( 𝐴 ∖ 𝐵 ) ) |
| 67 | domentr | ⊢ ( ( 𝐴 ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ∧ ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ≈ ( 𝐴 ∖ 𝐵 ) ) → 𝐴 ≼ ( 𝐴 ∖ 𝐵 ) ) | |
| 68 | 58 66 67 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → 𝐴 ≼ ( 𝐴 ∖ 𝐵 ) ) |
| 69 | sbth | ⊢ ( ( ( 𝐴 ∖ 𝐵 ) ≼ 𝐴 ∧ 𝐴 ≼ ( 𝐴 ∖ 𝐵 ) ) → ( 𝐴 ∖ 𝐵 ) ≈ 𝐴 ) | |
| 70 | 4 68 69 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐴 ∖ 𝐵 ) ≈ 𝐴 ) |