This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absorption law for addition to an infinite cardinal. (Contributed by NM, 30-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infdjuabs | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → 𝐵 ≼ 𝐴 ) | |
| 2 | reldom | ⊢ Rel ≼ | |
| 3 | 2 | brrelex2i | ⊢ ( 𝐵 ≼ 𝐴 → 𝐴 ∈ V ) |
| 4 | djudom2 | ⊢ ( ( 𝐵 ≼ 𝐴 ∧ 𝐴 ∈ V ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝐴 ⊔ 𝐴 ) ) | |
| 5 | 1 3 4 | syl2anc2 | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝐴 ⊔ 𝐴 ) ) |
| 6 | xp2dju | ⊢ ( 2o × 𝐴 ) = ( 𝐴 ⊔ 𝐴 ) | |
| 7 | 5 6 | breqtrrdi | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 2o × 𝐴 ) ) |
| 8 | simp1 | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → 𝐴 ∈ dom card ) | |
| 9 | 2onn | ⊢ 2o ∈ ω | |
| 10 | nnsdom | ⊢ ( 2o ∈ ω → 2o ≺ ω ) | |
| 11 | sdomdom | ⊢ ( 2o ≺ ω → 2o ≼ ω ) | |
| 12 | 9 10 11 | mp2b | ⊢ 2o ≼ ω |
| 13 | simp2 | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ω ≼ 𝐴 ) | |
| 14 | domtr | ⊢ ( ( 2o ≼ ω ∧ ω ≼ 𝐴 ) → 2o ≼ 𝐴 ) | |
| 15 | 12 13 14 | sylancr | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → 2o ≼ 𝐴 ) |
| 16 | xpdom1g | ⊢ ( ( 𝐴 ∈ dom card ∧ 2o ≼ 𝐴 ) → ( 2o × 𝐴 ) ≼ ( 𝐴 × 𝐴 ) ) | |
| 17 | 8 15 16 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 2o × 𝐴 ) ≼ ( 𝐴 × 𝐴 ) ) |
| 18 | domtr | ⊢ ( ( ( 𝐴 ⊔ 𝐵 ) ≼ ( 2o × 𝐴 ) ∧ ( 2o × 𝐴 ) ≼ ( 𝐴 × 𝐴 ) ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝐴 × 𝐴 ) ) | |
| 19 | 7 17 18 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝐴 × 𝐴 ) ) |
| 20 | infxpidm2 | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐴 × 𝐴 ) ≈ 𝐴 ) | |
| 21 | 20 | 3adant3 | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 × 𝐴 ) ≈ 𝐴 ) |
| 22 | domentr | ⊢ ( ( ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝐴 × 𝐴 ) ∧ ( 𝐴 × 𝐴 ) ≈ 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ 𝐴 ) | |
| 23 | 19 21 22 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ 𝐴 ) |
| 24 | 2 | brrelex1i | ⊢ ( 𝐵 ≼ 𝐴 → 𝐵 ∈ V ) |
| 25 | 24 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → 𝐵 ∈ V ) |
| 26 | djudoml | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ V ) → 𝐴 ≼ ( 𝐴 ⊔ 𝐵 ) ) | |
| 27 | 8 25 26 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → 𝐴 ≼ ( 𝐴 ⊔ 𝐵 ) ) |
| 28 | sbth | ⊢ ( ( ( 𝐴 ⊔ 𝐵 ) ≼ 𝐴 ∧ 𝐴 ≼ ( 𝐴 ⊔ 𝐵 ) ) → ( 𝐴 ⊔ 𝐵 ) ≈ 𝐴 ) | |
| 29 | 23 27 28 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≈ 𝐴 ) |