This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinality of an infinite set does not change after subtracting a strictly smaller one. Example in Enderton p. 164. (Contributed by NM, 22-Oct-2004) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infdif | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( A \ B ) ~~ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> A e. dom card ) |
|
| 2 | difss | |- ( A \ B ) C_ A |
|
| 3 | ssdomg | |- ( A e. dom card -> ( ( A \ B ) C_ A -> ( A \ B ) ~<_ A ) ) |
|
| 4 | 1 2 3 | mpisyl | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( A \ B ) ~<_ A ) |
| 5 | sdomdom | |- ( B ~< A -> B ~<_ A ) |
|
| 6 | 5 | 3ad2ant3 | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> B ~<_ A ) |
| 7 | numdom | |- ( ( A e. dom card /\ B ~<_ A ) -> B e. dom card ) |
|
| 8 | 1 6 7 | syl2anc | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> B e. dom card ) |
| 9 | unnum | |- ( ( A e. dom card /\ B e. dom card ) -> ( A u. B ) e. dom card ) |
|
| 10 | 1 8 9 | syl2anc | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( A u. B ) e. dom card ) |
| 11 | ssun1 | |- A C_ ( A u. B ) |
|
| 12 | ssdomg | |- ( ( A u. B ) e. dom card -> ( A C_ ( A u. B ) -> A ~<_ ( A u. B ) ) ) |
|
| 13 | 10 11 12 | mpisyl | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> A ~<_ ( A u. B ) ) |
| 14 | undif1 | |- ( ( A \ B ) u. B ) = ( A u. B ) |
|
| 15 | ssnum | |- ( ( A e. dom card /\ ( A \ B ) C_ A ) -> ( A \ B ) e. dom card ) |
|
| 16 | 1 2 15 | sylancl | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( A \ B ) e. dom card ) |
| 17 | undjudom | |- ( ( ( A \ B ) e. dom card /\ B e. dom card ) -> ( ( A \ B ) u. B ) ~<_ ( ( A \ B ) |_| B ) ) |
|
| 18 | 16 8 17 | syl2anc | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( ( A \ B ) u. B ) ~<_ ( ( A \ B ) |_| B ) ) |
| 19 | 14 18 | eqbrtrrid | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( A u. B ) ~<_ ( ( A \ B ) |_| B ) ) |
| 20 | domtr | |- ( ( A ~<_ ( A u. B ) /\ ( A u. B ) ~<_ ( ( A \ B ) |_| B ) ) -> A ~<_ ( ( A \ B ) |_| B ) ) |
|
| 21 | 13 19 20 | syl2anc | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> A ~<_ ( ( A \ B ) |_| B ) ) |
| 22 | simp3 | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> B ~< A ) |
|
| 23 | sdomdom | |- ( ( A \ B ) ~< B -> ( A \ B ) ~<_ B ) |
|
| 24 | relsdom | |- Rel ~< |
|
| 25 | 24 | brrelex2i | |- ( ( A \ B ) ~< B -> B e. _V ) |
| 26 | djudom1 | |- ( ( ( A \ B ) ~<_ B /\ B e. _V ) -> ( ( A \ B ) |_| B ) ~<_ ( B |_| B ) ) |
|
| 27 | 23 25 26 | syl2anc | |- ( ( A \ B ) ~< B -> ( ( A \ B ) |_| B ) ~<_ ( B |_| B ) ) |
| 28 | domtr | |- ( ( A ~<_ ( ( A \ B ) |_| B ) /\ ( ( A \ B ) |_| B ) ~<_ ( B |_| B ) ) -> A ~<_ ( B |_| B ) ) |
|
| 29 | 28 | ex | |- ( A ~<_ ( ( A \ B ) |_| B ) -> ( ( ( A \ B ) |_| B ) ~<_ ( B |_| B ) -> A ~<_ ( B |_| B ) ) ) |
| 30 | 21 29 | syl | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( ( ( A \ B ) |_| B ) ~<_ ( B |_| B ) -> A ~<_ ( B |_| B ) ) ) |
| 31 | simp2 | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> _om ~<_ A ) |
|
| 32 | domtr | |- ( ( _om ~<_ A /\ A ~<_ ( B |_| B ) ) -> _om ~<_ ( B |_| B ) ) |
|
| 33 | 32 | ex | |- ( _om ~<_ A -> ( A ~<_ ( B |_| B ) -> _om ~<_ ( B |_| B ) ) ) |
| 34 | 31 33 | syl | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( A ~<_ ( B |_| B ) -> _om ~<_ ( B |_| B ) ) ) |
| 35 | djuinf | |- ( _om ~<_ B <-> _om ~<_ ( B |_| B ) ) |
|
| 36 | 35 | biimpri | |- ( _om ~<_ ( B |_| B ) -> _om ~<_ B ) |
| 37 | domrefg | |- ( B e. dom card -> B ~<_ B ) |
|
| 38 | infdjuabs | |- ( ( B e. dom card /\ _om ~<_ B /\ B ~<_ B ) -> ( B |_| B ) ~~ B ) |
|
| 39 | 38 | 3com23 | |- ( ( B e. dom card /\ B ~<_ B /\ _om ~<_ B ) -> ( B |_| B ) ~~ B ) |
| 40 | 39 | 3expia | |- ( ( B e. dom card /\ B ~<_ B ) -> ( _om ~<_ B -> ( B |_| B ) ~~ B ) ) |
| 41 | 37 40 | mpdan | |- ( B e. dom card -> ( _om ~<_ B -> ( B |_| B ) ~~ B ) ) |
| 42 | 8 36 41 | syl2im | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( _om ~<_ ( B |_| B ) -> ( B |_| B ) ~~ B ) ) |
| 43 | 34 42 | syld | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( A ~<_ ( B |_| B ) -> ( B |_| B ) ~~ B ) ) |
| 44 | domen2 | |- ( ( B |_| B ) ~~ B -> ( A ~<_ ( B |_| B ) <-> A ~<_ B ) ) |
|
| 45 | 44 | biimpcd | |- ( A ~<_ ( B |_| B ) -> ( ( B |_| B ) ~~ B -> A ~<_ B ) ) |
| 46 | 43 45 | sylcom | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( A ~<_ ( B |_| B ) -> A ~<_ B ) ) |
| 47 | 30 46 | syld | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( ( ( A \ B ) |_| B ) ~<_ ( B |_| B ) -> A ~<_ B ) ) |
| 48 | domnsym | |- ( A ~<_ B -> -. B ~< A ) |
|
| 49 | 27 47 48 | syl56 | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( ( A \ B ) ~< B -> -. B ~< A ) ) |
| 50 | 22 49 | mt2d | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> -. ( A \ B ) ~< B ) |
| 51 | domtri2 | |- ( ( B e. dom card /\ ( A \ B ) e. dom card ) -> ( B ~<_ ( A \ B ) <-> -. ( A \ B ) ~< B ) ) |
|
| 52 | 8 16 51 | syl2anc | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( B ~<_ ( A \ B ) <-> -. ( A \ B ) ~< B ) ) |
| 53 | 50 52 | mpbird | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> B ~<_ ( A \ B ) ) |
| 54 | 1 | difexd | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( A \ B ) e. _V ) |
| 55 | djudom2 | |- ( ( B ~<_ ( A \ B ) /\ ( A \ B ) e. _V ) -> ( ( A \ B ) |_| B ) ~<_ ( ( A \ B ) |_| ( A \ B ) ) ) |
|
| 56 | 53 54 55 | syl2anc | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( ( A \ B ) |_| B ) ~<_ ( ( A \ B ) |_| ( A \ B ) ) ) |
| 57 | domtr | |- ( ( A ~<_ ( ( A \ B ) |_| B ) /\ ( ( A \ B ) |_| B ) ~<_ ( ( A \ B ) |_| ( A \ B ) ) ) -> A ~<_ ( ( A \ B ) |_| ( A \ B ) ) ) |
|
| 58 | 21 56 57 | syl2anc | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> A ~<_ ( ( A \ B ) |_| ( A \ B ) ) ) |
| 59 | domtr | |- ( ( _om ~<_ A /\ A ~<_ ( ( A \ B ) |_| ( A \ B ) ) ) -> _om ~<_ ( ( A \ B ) |_| ( A \ B ) ) ) |
|
| 60 | 31 58 59 | syl2anc | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> _om ~<_ ( ( A \ B ) |_| ( A \ B ) ) ) |
| 61 | djuinf | |- ( _om ~<_ ( A \ B ) <-> _om ~<_ ( ( A \ B ) |_| ( A \ B ) ) ) |
|
| 62 | 60 61 | sylibr | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> _om ~<_ ( A \ B ) ) |
| 63 | domrefg | |- ( ( A \ B ) e. dom card -> ( A \ B ) ~<_ ( A \ B ) ) |
|
| 64 | 16 63 | syl | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( A \ B ) ~<_ ( A \ B ) ) |
| 65 | infdjuabs | |- ( ( ( A \ B ) e. dom card /\ _om ~<_ ( A \ B ) /\ ( A \ B ) ~<_ ( A \ B ) ) -> ( ( A \ B ) |_| ( A \ B ) ) ~~ ( A \ B ) ) |
|
| 66 | 16 62 64 65 | syl3anc | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( ( A \ B ) |_| ( A \ B ) ) ~~ ( A \ B ) ) |
| 67 | domentr | |- ( ( A ~<_ ( ( A \ B ) |_| ( A \ B ) ) /\ ( ( A \ B ) |_| ( A \ B ) ) ~~ ( A \ B ) ) -> A ~<_ ( A \ B ) ) |
|
| 68 | 58 66 67 | syl2anc | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> A ~<_ ( A \ B ) ) |
| 69 | sbth | |- ( ( ( A \ B ) ~<_ A /\ A ~<_ ( A \ B ) ) -> ( A \ B ) ~~ A ) |
|
| 70 | 4 68 69 | syl2anc | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( A \ B ) ~~ A ) |