This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is infinite iff the cardinal sum with itself is infinite. (Contributed by NM, 22-Oct-2004) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djuinf | ⊢ ( ω ≼ 𝐴 ↔ ω ≼ ( 𝐴 ⊔ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom | ⊢ Rel ≼ | |
| 2 | 1 | brrelex2i | ⊢ ( ω ≼ 𝐴 → 𝐴 ∈ V ) |
| 3 | djudoml | ⊢ ( ( 𝐴 ∈ V ∧ 𝐴 ∈ V ) → 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) ) | |
| 4 | 2 2 3 | syl2anc | ⊢ ( ω ≼ 𝐴 → 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) ) |
| 5 | domtr | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) ) → ω ≼ ( 𝐴 ⊔ 𝐴 ) ) | |
| 6 | 4 5 | mpdan | ⊢ ( ω ≼ 𝐴 → ω ≼ ( 𝐴 ⊔ 𝐴 ) ) |
| 7 | 1 | brrelex2i | ⊢ ( ω ≼ ( 𝐴 ⊔ 𝐴 ) → ( 𝐴 ⊔ 𝐴 ) ∈ V ) |
| 8 | anidm | ⊢ ( ( 𝐴 ∈ V ∧ 𝐴 ∈ V ) ↔ 𝐴 ∈ V ) | |
| 9 | djuexb | ⊢ ( ( 𝐴 ∈ V ∧ 𝐴 ∈ V ) ↔ ( 𝐴 ⊔ 𝐴 ) ∈ V ) | |
| 10 | 8 9 | bitr3i | ⊢ ( 𝐴 ∈ V ↔ ( 𝐴 ⊔ 𝐴 ) ∈ V ) |
| 11 | 7 10 | sylibr | ⊢ ( ω ≼ ( 𝐴 ⊔ 𝐴 ) → 𝐴 ∈ V ) |
| 12 | domeng | ⊢ ( ( 𝐴 ⊔ 𝐴 ) ∈ V → ( ω ≼ ( 𝐴 ⊔ 𝐴 ) ↔ ∃ 𝑥 ( ω ≈ 𝑥 ∧ 𝑥 ⊆ ( 𝐴 ⊔ 𝐴 ) ) ) ) | |
| 13 | 7 12 | syl | ⊢ ( ω ≼ ( 𝐴 ⊔ 𝐴 ) → ( ω ≼ ( 𝐴 ⊔ 𝐴 ) ↔ ∃ 𝑥 ( ω ≈ 𝑥 ∧ 𝑥 ⊆ ( 𝐴 ⊔ 𝐴 ) ) ) ) |
| 14 | 13 | ibi | ⊢ ( ω ≼ ( 𝐴 ⊔ 𝐴 ) → ∃ 𝑥 ( ω ≈ 𝑥 ∧ 𝑥 ⊆ ( 𝐴 ⊔ 𝐴 ) ) ) |
| 15 | indi | ⊢ ( 𝑥 ∩ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐴 ) ) ) = ( ( 𝑥 ∩ ( { ∅ } × 𝐴 ) ) ∪ ( 𝑥 ∩ ( { 1o } × 𝐴 ) ) ) | |
| 16 | simpr | ⊢ ( ( ω ≈ 𝑥 ∧ 𝑥 ⊆ ( 𝐴 ⊔ 𝐴 ) ) → 𝑥 ⊆ ( 𝐴 ⊔ 𝐴 ) ) | |
| 17 | df-dju | ⊢ ( 𝐴 ⊔ 𝐴 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐴 ) ) | |
| 18 | 16 17 | sseqtrdi | ⊢ ( ( ω ≈ 𝑥 ∧ 𝑥 ⊆ ( 𝐴 ⊔ 𝐴 ) ) → 𝑥 ⊆ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐴 ) ) ) |
| 19 | dfss2 | ⊢ ( 𝑥 ⊆ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐴 ) ) ↔ ( 𝑥 ∩ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐴 ) ) ) = 𝑥 ) | |
| 20 | 18 19 | sylib | ⊢ ( ( ω ≈ 𝑥 ∧ 𝑥 ⊆ ( 𝐴 ⊔ 𝐴 ) ) → ( 𝑥 ∩ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐴 ) ) ) = 𝑥 ) |
| 21 | 15 20 | eqtr3id | ⊢ ( ( ω ≈ 𝑥 ∧ 𝑥 ⊆ ( 𝐴 ⊔ 𝐴 ) ) → ( ( 𝑥 ∩ ( { ∅ } × 𝐴 ) ) ∪ ( 𝑥 ∩ ( { 1o } × 𝐴 ) ) ) = 𝑥 ) |
| 22 | ensym | ⊢ ( ω ≈ 𝑥 → 𝑥 ≈ ω ) | |
| 23 | 22 | adantr | ⊢ ( ( ω ≈ 𝑥 ∧ 𝑥 ⊆ ( 𝐴 ⊔ 𝐴 ) ) → 𝑥 ≈ ω ) |
| 24 | 21 23 | eqbrtrd | ⊢ ( ( ω ≈ 𝑥 ∧ 𝑥 ⊆ ( 𝐴 ⊔ 𝐴 ) ) → ( ( 𝑥 ∩ ( { ∅ } × 𝐴 ) ) ∪ ( 𝑥 ∩ ( { 1o } × 𝐴 ) ) ) ≈ ω ) |
| 25 | cdainflem | ⊢ ( ( ( 𝑥 ∩ ( { ∅ } × 𝐴 ) ) ∪ ( 𝑥 ∩ ( { 1o } × 𝐴 ) ) ) ≈ ω → ( ( 𝑥 ∩ ( { ∅ } × 𝐴 ) ) ≈ ω ∨ ( 𝑥 ∩ ( { 1o } × 𝐴 ) ) ≈ ω ) ) | |
| 26 | snex | ⊢ { ∅ } ∈ V | |
| 27 | xpexg | ⊢ ( ( { ∅ } ∈ V ∧ 𝐴 ∈ V ) → ( { ∅ } × 𝐴 ) ∈ V ) | |
| 28 | 26 27 | mpan | ⊢ ( 𝐴 ∈ V → ( { ∅ } × 𝐴 ) ∈ V ) |
| 29 | inss2 | ⊢ ( 𝑥 ∩ ( { ∅ } × 𝐴 ) ) ⊆ ( { ∅ } × 𝐴 ) | |
| 30 | ssdomg | ⊢ ( ( { ∅ } × 𝐴 ) ∈ V → ( ( 𝑥 ∩ ( { ∅ } × 𝐴 ) ) ⊆ ( { ∅ } × 𝐴 ) → ( 𝑥 ∩ ( { ∅ } × 𝐴 ) ) ≼ ( { ∅ } × 𝐴 ) ) ) | |
| 31 | 28 29 30 | mpisyl | ⊢ ( 𝐴 ∈ V → ( 𝑥 ∩ ( { ∅ } × 𝐴 ) ) ≼ ( { ∅ } × 𝐴 ) ) |
| 32 | 0ex | ⊢ ∅ ∈ V | |
| 33 | xpsnen2g | ⊢ ( ( ∅ ∈ V ∧ 𝐴 ∈ V ) → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) | |
| 34 | 32 33 | mpan | ⊢ ( 𝐴 ∈ V → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) |
| 35 | domentr | ⊢ ( ( ( 𝑥 ∩ ( { ∅ } × 𝐴 ) ) ≼ ( { ∅ } × 𝐴 ) ∧ ( { ∅ } × 𝐴 ) ≈ 𝐴 ) → ( 𝑥 ∩ ( { ∅ } × 𝐴 ) ) ≼ 𝐴 ) | |
| 36 | 31 34 35 | syl2anc | ⊢ ( 𝐴 ∈ V → ( 𝑥 ∩ ( { ∅ } × 𝐴 ) ) ≼ 𝐴 ) |
| 37 | domen1 | ⊢ ( ( 𝑥 ∩ ( { ∅ } × 𝐴 ) ) ≈ ω → ( ( 𝑥 ∩ ( { ∅ } × 𝐴 ) ) ≼ 𝐴 ↔ ω ≼ 𝐴 ) ) | |
| 38 | 36 37 | syl5ibcom | ⊢ ( 𝐴 ∈ V → ( ( 𝑥 ∩ ( { ∅ } × 𝐴 ) ) ≈ ω → ω ≼ 𝐴 ) ) |
| 39 | snex | ⊢ { 1o } ∈ V | |
| 40 | xpexg | ⊢ ( ( { 1o } ∈ V ∧ 𝐴 ∈ V ) → ( { 1o } × 𝐴 ) ∈ V ) | |
| 41 | 39 40 | mpan | ⊢ ( 𝐴 ∈ V → ( { 1o } × 𝐴 ) ∈ V ) |
| 42 | inss2 | ⊢ ( 𝑥 ∩ ( { 1o } × 𝐴 ) ) ⊆ ( { 1o } × 𝐴 ) | |
| 43 | ssdomg | ⊢ ( ( { 1o } × 𝐴 ) ∈ V → ( ( 𝑥 ∩ ( { 1o } × 𝐴 ) ) ⊆ ( { 1o } × 𝐴 ) → ( 𝑥 ∩ ( { 1o } × 𝐴 ) ) ≼ ( { 1o } × 𝐴 ) ) ) | |
| 44 | 41 42 43 | mpisyl | ⊢ ( 𝐴 ∈ V → ( 𝑥 ∩ ( { 1o } × 𝐴 ) ) ≼ ( { 1o } × 𝐴 ) ) |
| 45 | 1on | ⊢ 1o ∈ On | |
| 46 | xpsnen2g | ⊢ ( ( 1o ∈ On ∧ 𝐴 ∈ V ) → ( { 1o } × 𝐴 ) ≈ 𝐴 ) | |
| 47 | 45 46 | mpan | ⊢ ( 𝐴 ∈ V → ( { 1o } × 𝐴 ) ≈ 𝐴 ) |
| 48 | domentr | ⊢ ( ( ( 𝑥 ∩ ( { 1o } × 𝐴 ) ) ≼ ( { 1o } × 𝐴 ) ∧ ( { 1o } × 𝐴 ) ≈ 𝐴 ) → ( 𝑥 ∩ ( { 1o } × 𝐴 ) ) ≼ 𝐴 ) | |
| 49 | 44 47 48 | syl2anc | ⊢ ( 𝐴 ∈ V → ( 𝑥 ∩ ( { 1o } × 𝐴 ) ) ≼ 𝐴 ) |
| 50 | domen1 | ⊢ ( ( 𝑥 ∩ ( { 1o } × 𝐴 ) ) ≈ ω → ( ( 𝑥 ∩ ( { 1o } × 𝐴 ) ) ≼ 𝐴 ↔ ω ≼ 𝐴 ) ) | |
| 51 | 49 50 | syl5ibcom | ⊢ ( 𝐴 ∈ V → ( ( 𝑥 ∩ ( { 1o } × 𝐴 ) ) ≈ ω → ω ≼ 𝐴 ) ) |
| 52 | 38 51 | jaod | ⊢ ( 𝐴 ∈ V → ( ( ( 𝑥 ∩ ( { ∅ } × 𝐴 ) ) ≈ ω ∨ ( 𝑥 ∩ ( { 1o } × 𝐴 ) ) ≈ ω ) → ω ≼ 𝐴 ) ) |
| 53 | 25 52 | syl5 | ⊢ ( 𝐴 ∈ V → ( ( ( 𝑥 ∩ ( { ∅ } × 𝐴 ) ) ∪ ( 𝑥 ∩ ( { 1o } × 𝐴 ) ) ) ≈ ω → ω ≼ 𝐴 ) ) |
| 54 | 24 53 | syl5 | ⊢ ( 𝐴 ∈ V → ( ( ω ≈ 𝑥 ∧ 𝑥 ⊆ ( 𝐴 ⊔ 𝐴 ) ) → ω ≼ 𝐴 ) ) |
| 55 | 54 | exlimdv | ⊢ ( 𝐴 ∈ V → ( ∃ 𝑥 ( ω ≈ 𝑥 ∧ 𝑥 ⊆ ( 𝐴 ⊔ 𝐴 ) ) → ω ≼ 𝐴 ) ) |
| 56 | 11 14 55 | sylc | ⊢ ( ω ≼ ( 𝐴 ⊔ 𝐴 ) → ω ≼ 𝐴 ) |
| 57 | 6 56 | impbii | ⊢ ( ω ≼ 𝐴 ↔ ω ≼ ( 𝐴 ⊔ 𝐴 ) ) |