This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cardinality ordering for an infinite class difference. (Contributed by NM, 24-Mar-2007) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infdif2 | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( ( 𝐴 ∖ 𝐵 ) ≼ 𝐵 ↔ 𝐴 ≼ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domnsym | ⊢ ( ( 𝐴 ∖ 𝐵 ) ≼ 𝐵 → ¬ 𝐵 ≺ ( 𝐴 ∖ 𝐵 ) ) | |
| 2 | simp3 | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → 𝐵 ≺ 𝐴 ) | |
| 3 | infdif | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐴 ∖ 𝐵 ) ≈ 𝐴 ) | |
| 4 | 3 | ensymd | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → 𝐴 ≈ ( 𝐴 ∖ 𝐵 ) ) |
| 5 | sdomentr | ⊢ ( ( 𝐵 ≺ 𝐴 ∧ 𝐴 ≈ ( 𝐴 ∖ 𝐵 ) ) → 𝐵 ≺ ( 𝐴 ∖ 𝐵 ) ) | |
| 6 | 2 4 5 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → 𝐵 ≺ ( 𝐴 ∖ 𝐵 ) ) |
| 7 | 1 6 | nsyl3 | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ¬ ( 𝐴 ∖ 𝐵 ) ≼ 𝐵 ) |
| 8 | 7 | 3expia | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐵 ≺ 𝐴 → ¬ ( 𝐴 ∖ 𝐵 ) ≼ 𝐵 ) ) |
| 9 | 8 | 3adant2 | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐵 ≺ 𝐴 → ¬ ( 𝐴 ∖ 𝐵 ) ≼ 𝐵 ) ) |
| 10 | 9 | con2d | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( ( 𝐴 ∖ 𝐵 ) ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴 ) ) |
| 11 | domtri2 | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ) → ( 𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴 ) ) | |
| 12 | 11 | 3adant3 | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴 ) ) |
| 13 | 10 12 | sylibrd | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( ( 𝐴 ∖ 𝐵 ) ≼ 𝐵 → 𝐴 ≼ 𝐵 ) ) |
| 14 | simp1 | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → 𝐴 ∈ dom card ) | |
| 15 | difss | ⊢ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 | |
| 16 | ssdomg | ⊢ ( 𝐴 ∈ dom card → ( ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 → ( 𝐴 ∖ 𝐵 ) ≼ 𝐴 ) ) | |
| 17 | 14 15 16 | mpisyl | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐴 ∖ 𝐵 ) ≼ 𝐴 ) |
| 18 | domtr | ⊢ ( ( ( 𝐴 ∖ 𝐵 ) ≼ 𝐴 ∧ 𝐴 ≼ 𝐵 ) → ( 𝐴 ∖ 𝐵 ) ≼ 𝐵 ) | |
| 19 | 18 | ex | ⊢ ( ( 𝐴 ∖ 𝐵 ) ≼ 𝐴 → ( 𝐴 ≼ 𝐵 → ( 𝐴 ∖ 𝐵 ) ≼ 𝐵 ) ) |
| 20 | 17 19 | syl | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐴 ≼ 𝐵 → ( 𝐴 ∖ 𝐵 ) ≼ 𝐵 ) ) |
| 21 | 13 20 | impbid | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( ( 𝐴 ∖ 𝐵 ) ≼ 𝐵 ↔ 𝐴 ≼ 𝐵 ) ) |