This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. In the proof, we invoke the Axiom of Regularity in the form of zfreg . (Contributed by NM, 29-Oct-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | inf3lem.1 | ⊢ 𝐺 = ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) | |
| inf3lem.2 | ⊢ 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω ) | ||
| inf3lem.3 | ⊢ 𝐴 ∈ V | ||
| inf3lem.4 | ⊢ 𝐵 ∈ V | ||
| Assertion | inf3lem3 | ⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐴 ∈ ω → ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ suc 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inf3lem.1 | ⊢ 𝐺 = ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) | |
| 2 | inf3lem.2 | ⊢ 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω ) | |
| 3 | inf3lem.3 | ⊢ 𝐴 ∈ V | |
| 4 | inf3lem.4 | ⊢ 𝐵 ∈ V | |
| 5 | 1 2 3 4 | inf3lemd | ⊢ ( 𝐴 ∈ ω → ( 𝐹 ‘ 𝐴 ) ⊆ 𝑥 ) |
| 6 | 1 2 3 4 | inf3lem2 | ⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐴 ∈ ω → ( 𝐹 ‘ 𝐴 ) ≠ 𝑥 ) ) |
| 7 | 6 | com12 | ⊢ ( 𝐴 ∈ ω → ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝐴 ) ≠ 𝑥 ) ) |
| 8 | pssdifn0 | ⊢ ( ( ( 𝐹 ‘ 𝐴 ) ⊆ 𝑥 ∧ ( 𝐹 ‘ 𝐴 ) ≠ 𝑥 ) → ( 𝑥 ∖ ( 𝐹 ‘ 𝐴 ) ) ≠ ∅ ) | |
| 9 | 5 7 8 | syl6an | ⊢ ( 𝐴 ∈ ω → ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝑥 ∖ ( 𝐹 ‘ 𝐴 ) ) ≠ ∅ ) ) |
| 10 | vex | ⊢ 𝑥 ∈ V | |
| 11 | 10 | difexi | ⊢ ( 𝑥 ∖ ( 𝐹 ‘ 𝐴 ) ) ∈ V |
| 12 | zfreg | ⊢ ( ( ( 𝑥 ∖ ( 𝐹 ‘ 𝐴 ) ) ∈ V ∧ ( 𝑥 ∖ ( 𝐹 ‘ 𝐴 ) ) ≠ ∅ ) → ∃ 𝑣 ∈ ( 𝑥 ∖ ( 𝐹 ‘ 𝐴 ) ) ( 𝑣 ∩ ( 𝑥 ∖ ( 𝐹 ‘ 𝐴 ) ) ) = ∅ ) | |
| 13 | 11 12 | mpan | ⊢ ( ( 𝑥 ∖ ( 𝐹 ‘ 𝐴 ) ) ≠ ∅ → ∃ 𝑣 ∈ ( 𝑥 ∖ ( 𝐹 ‘ 𝐴 ) ) ( 𝑣 ∩ ( 𝑥 ∖ ( 𝐹 ‘ 𝐴 ) ) ) = ∅ ) |
| 14 | eldifi | ⊢ ( 𝑣 ∈ ( 𝑥 ∖ ( 𝐹 ‘ 𝐴 ) ) → 𝑣 ∈ 𝑥 ) | |
| 15 | inssdif0 | ⊢ ( ( 𝑣 ∩ 𝑥 ) ⊆ ( 𝐹 ‘ 𝐴 ) ↔ ( 𝑣 ∩ ( 𝑥 ∖ ( 𝐹 ‘ 𝐴 ) ) ) = ∅ ) | |
| 16 | 15 | biimpri | ⊢ ( ( 𝑣 ∩ ( 𝑥 ∖ ( 𝐹 ‘ 𝐴 ) ) ) = ∅ → ( 𝑣 ∩ 𝑥 ) ⊆ ( 𝐹 ‘ 𝐴 ) ) |
| 17 | 14 16 | anim12i | ⊢ ( ( 𝑣 ∈ ( 𝑥 ∖ ( 𝐹 ‘ 𝐴 ) ) ∧ ( 𝑣 ∩ ( 𝑥 ∖ ( 𝐹 ‘ 𝐴 ) ) ) = ∅ ) → ( 𝑣 ∈ 𝑥 ∧ ( 𝑣 ∩ 𝑥 ) ⊆ ( 𝐹 ‘ 𝐴 ) ) ) |
| 18 | vex | ⊢ 𝑣 ∈ V | |
| 19 | fvex | ⊢ ( 𝐹 ‘ 𝐴 ) ∈ V | |
| 20 | 1 2 18 19 | inf3lema | ⊢ ( 𝑣 ∈ ( 𝐺 ‘ ( 𝐹 ‘ 𝐴 ) ) ↔ ( 𝑣 ∈ 𝑥 ∧ ( 𝑣 ∩ 𝑥 ) ⊆ ( 𝐹 ‘ 𝐴 ) ) ) |
| 21 | 17 20 | sylibr | ⊢ ( ( 𝑣 ∈ ( 𝑥 ∖ ( 𝐹 ‘ 𝐴 ) ) ∧ ( 𝑣 ∩ ( 𝑥 ∖ ( 𝐹 ‘ 𝐴 ) ) ) = ∅ ) → 𝑣 ∈ ( 𝐺 ‘ ( 𝐹 ‘ 𝐴 ) ) ) |
| 22 | 1 2 3 4 | inf3lemc | ⊢ ( 𝐴 ∈ ω → ( 𝐹 ‘ suc 𝐴 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝐴 ) ) ) |
| 23 | 22 | eleq2d | ⊢ ( 𝐴 ∈ ω → ( 𝑣 ∈ ( 𝐹 ‘ suc 𝐴 ) ↔ 𝑣 ∈ ( 𝐺 ‘ ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 24 | 21 23 | imbitrrid | ⊢ ( 𝐴 ∈ ω → ( ( 𝑣 ∈ ( 𝑥 ∖ ( 𝐹 ‘ 𝐴 ) ) ∧ ( 𝑣 ∩ ( 𝑥 ∖ ( 𝐹 ‘ 𝐴 ) ) ) = ∅ ) → 𝑣 ∈ ( 𝐹 ‘ suc 𝐴 ) ) ) |
| 25 | eldifn | ⊢ ( 𝑣 ∈ ( 𝑥 ∖ ( 𝐹 ‘ 𝐴 ) ) → ¬ 𝑣 ∈ ( 𝐹 ‘ 𝐴 ) ) | |
| 26 | 25 | adantr | ⊢ ( ( 𝑣 ∈ ( 𝑥 ∖ ( 𝐹 ‘ 𝐴 ) ) ∧ ( 𝑣 ∩ ( 𝑥 ∖ ( 𝐹 ‘ 𝐴 ) ) ) = ∅ ) → ¬ 𝑣 ∈ ( 𝐹 ‘ 𝐴 ) ) |
| 27 | 24 26 | jca2 | ⊢ ( 𝐴 ∈ ω → ( ( 𝑣 ∈ ( 𝑥 ∖ ( 𝐹 ‘ 𝐴 ) ) ∧ ( 𝑣 ∩ ( 𝑥 ∖ ( 𝐹 ‘ 𝐴 ) ) ) = ∅ ) → ( 𝑣 ∈ ( 𝐹 ‘ suc 𝐴 ) ∧ ¬ 𝑣 ∈ ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 28 | eleq2 | ⊢ ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ suc 𝐴 ) → ( 𝑣 ∈ ( 𝐹 ‘ 𝐴 ) ↔ 𝑣 ∈ ( 𝐹 ‘ suc 𝐴 ) ) ) | |
| 29 | 28 | biimprd | ⊢ ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ suc 𝐴 ) → ( 𝑣 ∈ ( 𝐹 ‘ suc 𝐴 ) → 𝑣 ∈ ( 𝐹 ‘ 𝐴 ) ) ) |
| 30 | iman | ⊢ ( ( 𝑣 ∈ ( 𝐹 ‘ suc 𝐴 ) → 𝑣 ∈ ( 𝐹 ‘ 𝐴 ) ) ↔ ¬ ( 𝑣 ∈ ( 𝐹 ‘ suc 𝐴 ) ∧ ¬ 𝑣 ∈ ( 𝐹 ‘ 𝐴 ) ) ) | |
| 31 | 29 30 | sylib | ⊢ ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ suc 𝐴 ) → ¬ ( 𝑣 ∈ ( 𝐹 ‘ suc 𝐴 ) ∧ ¬ 𝑣 ∈ ( 𝐹 ‘ 𝐴 ) ) ) |
| 32 | 31 | necon2ai | ⊢ ( ( 𝑣 ∈ ( 𝐹 ‘ suc 𝐴 ) ∧ ¬ 𝑣 ∈ ( 𝐹 ‘ 𝐴 ) ) → ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ suc 𝐴 ) ) |
| 33 | 27 32 | syl6 | ⊢ ( 𝐴 ∈ ω → ( ( 𝑣 ∈ ( 𝑥 ∖ ( 𝐹 ‘ 𝐴 ) ) ∧ ( 𝑣 ∩ ( 𝑥 ∖ ( 𝐹 ‘ 𝐴 ) ) ) = ∅ ) → ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ suc 𝐴 ) ) ) |
| 34 | 33 | expd | ⊢ ( 𝐴 ∈ ω → ( 𝑣 ∈ ( 𝑥 ∖ ( 𝐹 ‘ 𝐴 ) ) → ( ( 𝑣 ∩ ( 𝑥 ∖ ( 𝐹 ‘ 𝐴 ) ) ) = ∅ → ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ suc 𝐴 ) ) ) ) |
| 35 | 34 | rexlimdv | ⊢ ( 𝐴 ∈ ω → ( ∃ 𝑣 ∈ ( 𝑥 ∖ ( 𝐹 ‘ 𝐴 ) ) ( 𝑣 ∩ ( 𝑥 ∖ ( 𝐹 ‘ 𝐴 ) ) ) = ∅ → ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ suc 𝐴 ) ) ) |
| 36 | 13 35 | syl5 | ⊢ ( 𝐴 ∈ ω → ( ( 𝑥 ∖ ( 𝐹 ‘ 𝐴 ) ) ≠ ∅ → ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ suc 𝐴 ) ) ) |
| 37 | 9 36 | syldc | ⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐴 ∈ ω → ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ suc 𝐴 ) ) ) |