This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. (Contributed by NM, 28-Oct-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | inf3lem.1 | ⊢ 𝐺 = ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) | |
| inf3lem.2 | ⊢ 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω ) | ||
| inf3lem.3 | ⊢ 𝐴 ∈ V | ||
| inf3lem.4 | ⊢ 𝐵 ∈ V | ||
| Assertion | inf3lem2 | ⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐴 ∈ ω → ( 𝐹 ‘ 𝐴 ) ≠ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inf3lem.1 | ⊢ 𝐺 = ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) | |
| 2 | inf3lem.2 | ⊢ 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω ) | |
| 3 | inf3lem.3 | ⊢ 𝐴 ∈ V | |
| 4 | inf3lem.4 | ⊢ 𝐵 ∈ V | |
| 5 | fveq2 | ⊢ ( 𝑣 = ∅ → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ ∅ ) ) | |
| 6 | 5 | neeq1d | ⊢ ( 𝑣 = ∅ → ( ( 𝐹 ‘ 𝑣 ) ≠ 𝑥 ↔ ( 𝐹 ‘ ∅ ) ≠ 𝑥 ) ) |
| 7 | 6 | imbi2d | ⊢ ( 𝑣 = ∅ → ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝑣 ) ≠ 𝑥 ) ↔ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ ∅ ) ≠ 𝑥 ) ) ) |
| 8 | fveq2 | ⊢ ( 𝑣 = 𝑢 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) ) | |
| 9 | 8 | neeq1d | ⊢ ( 𝑣 = 𝑢 → ( ( 𝐹 ‘ 𝑣 ) ≠ 𝑥 ↔ ( 𝐹 ‘ 𝑢 ) ≠ 𝑥 ) ) |
| 10 | 9 | imbi2d | ⊢ ( 𝑣 = 𝑢 → ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝑣 ) ≠ 𝑥 ) ↔ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝑢 ) ≠ 𝑥 ) ) ) |
| 11 | fveq2 | ⊢ ( 𝑣 = suc 𝑢 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ suc 𝑢 ) ) | |
| 12 | 11 | neeq1d | ⊢ ( 𝑣 = suc 𝑢 → ( ( 𝐹 ‘ 𝑣 ) ≠ 𝑥 ↔ ( 𝐹 ‘ suc 𝑢 ) ≠ 𝑥 ) ) |
| 13 | 12 | imbi2d | ⊢ ( 𝑣 = suc 𝑢 → ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝑣 ) ≠ 𝑥 ) ↔ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ suc 𝑢 ) ≠ 𝑥 ) ) ) |
| 14 | fveq2 | ⊢ ( 𝑣 = 𝐴 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 15 | 14 | neeq1d | ⊢ ( 𝑣 = 𝐴 → ( ( 𝐹 ‘ 𝑣 ) ≠ 𝑥 ↔ ( 𝐹 ‘ 𝐴 ) ≠ 𝑥 ) ) |
| 16 | 15 | imbi2d | ⊢ ( 𝑣 = 𝐴 → ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝑣 ) ≠ 𝑥 ) ↔ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝐴 ) ≠ 𝑥 ) ) ) |
| 17 | 1 2 3 4 | inf3lemb | ⊢ ( 𝐹 ‘ ∅ ) = ∅ |
| 18 | 17 | eqeq1i | ⊢ ( ( 𝐹 ‘ ∅ ) = 𝑥 ↔ ∅ = 𝑥 ) |
| 19 | eqcom | ⊢ ( ∅ = 𝑥 ↔ 𝑥 = ∅ ) | |
| 20 | 18 19 | sylbb | ⊢ ( ( 𝐹 ‘ ∅ ) = 𝑥 → 𝑥 = ∅ ) |
| 21 | 20 | necon3i | ⊢ ( 𝑥 ≠ ∅ → ( 𝐹 ‘ ∅ ) ≠ 𝑥 ) |
| 22 | 21 | adantr | ⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ ∅ ) ≠ 𝑥 ) |
| 23 | vex | ⊢ 𝑢 ∈ V | |
| 24 | 1 2 23 4 | inf3lemd | ⊢ ( 𝑢 ∈ ω → ( 𝐹 ‘ 𝑢 ) ⊆ 𝑥 ) |
| 25 | df-pss | ⊢ ( ( 𝐹 ‘ 𝑢 ) ⊊ 𝑥 ↔ ( ( 𝐹 ‘ 𝑢 ) ⊆ 𝑥 ∧ ( 𝐹 ‘ 𝑢 ) ≠ 𝑥 ) ) | |
| 26 | pssnel | ⊢ ( ( 𝐹 ‘ 𝑢 ) ⊊ 𝑥 → ∃ 𝑣 ( 𝑣 ∈ 𝑥 ∧ ¬ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) ) | |
| 27 | 25 26 | sylbir | ⊢ ( ( ( 𝐹 ‘ 𝑢 ) ⊆ 𝑥 ∧ ( 𝐹 ‘ 𝑢 ) ≠ 𝑥 ) → ∃ 𝑣 ( 𝑣 ∈ 𝑥 ∧ ¬ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) ) |
| 28 | ssel | ⊢ ( 𝑥 ⊆ ∪ 𝑥 → ( 𝑣 ∈ 𝑥 → 𝑣 ∈ ∪ 𝑥 ) ) | |
| 29 | eluni | ⊢ ( 𝑣 ∈ ∪ 𝑥 ↔ ∃ 𝑓 ( 𝑣 ∈ 𝑓 ∧ 𝑓 ∈ 𝑥 ) ) | |
| 30 | 28 29 | imbitrdi | ⊢ ( 𝑥 ⊆ ∪ 𝑥 → ( 𝑣 ∈ 𝑥 → ∃ 𝑓 ( 𝑣 ∈ 𝑓 ∧ 𝑓 ∈ 𝑥 ) ) ) |
| 31 | eleq2 | ⊢ ( ( 𝐹 ‘ suc 𝑢 ) = 𝑥 → ( 𝑓 ∈ ( 𝐹 ‘ suc 𝑢 ) ↔ 𝑓 ∈ 𝑥 ) ) | |
| 32 | 31 | biimparc | ⊢ ( ( 𝑓 ∈ 𝑥 ∧ ( 𝐹 ‘ suc 𝑢 ) = 𝑥 ) → 𝑓 ∈ ( 𝐹 ‘ suc 𝑢 ) ) |
| 33 | 1 2 23 4 | inf3lemc | ⊢ ( 𝑢 ∈ ω → ( 𝐹 ‘ suc 𝑢 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑢 ) ) ) |
| 34 | 33 | eleq2d | ⊢ ( 𝑢 ∈ ω → ( 𝑓 ∈ ( 𝐹 ‘ suc 𝑢 ) ↔ 𝑓 ∈ ( 𝐺 ‘ ( 𝐹 ‘ 𝑢 ) ) ) ) |
| 35 | elin | ⊢ ( 𝑣 ∈ ( 𝑓 ∩ 𝑥 ) ↔ ( 𝑣 ∈ 𝑓 ∧ 𝑣 ∈ 𝑥 ) ) | |
| 36 | vex | ⊢ 𝑓 ∈ V | |
| 37 | fvex | ⊢ ( 𝐹 ‘ 𝑢 ) ∈ V | |
| 38 | 1 2 36 37 | inf3lema | ⊢ ( 𝑓 ∈ ( 𝐺 ‘ ( 𝐹 ‘ 𝑢 ) ) ↔ ( 𝑓 ∈ 𝑥 ∧ ( 𝑓 ∩ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑢 ) ) ) |
| 39 | 38 | simprbi | ⊢ ( 𝑓 ∈ ( 𝐺 ‘ ( 𝐹 ‘ 𝑢 ) ) → ( 𝑓 ∩ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑢 ) ) |
| 40 | 39 | sseld | ⊢ ( 𝑓 ∈ ( 𝐺 ‘ ( 𝐹 ‘ 𝑢 ) ) → ( 𝑣 ∈ ( 𝑓 ∩ 𝑥 ) → 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) ) |
| 41 | 35 40 | biimtrrid | ⊢ ( 𝑓 ∈ ( 𝐺 ‘ ( 𝐹 ‘ 𝑢 ) ) → ( ( 𝑣 ∈ 𝑓 ∧ 𝑣 ∈ 𝑥 ) → 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) ) |
| 42 | 34 41 | biimtrdi | ⊢ ( 𝑢 ∈ ω → ( 𝑓 ∈ ( 𝐹 ‘ suc 𝑢 ) → ( ( 𝑣 ∈ 𝑓 ∧ 𝑣 ∈ 𝑥 ) → 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) ) ) |
| 43 | 32 42 | syl5 | ⊢ ( 𝑢 ∈ ω → ( ( 𝑓 ∈ 𝑥 ∧ ( 𝐹 ‘ suc 𝑢 ) = 𝑥 ) → ( ( 𝑣 ∈ 𝑓 ∧ 𝑣 ∈ 𝑥 ) → 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) ) ) |
| 44 | 43 | com23 | ⊢ ( 𝑢 ∈ ω → ( ( 𝑣 ∈ 𝑓 ∧ 𝑣 ∈ 𝑥 ) → ( ( 𝑓 ∈ 𝑥 ∧ ( 𝐹 ‘ suc 𝑢 ) = 𝑥 ) → 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) ) ) |
| 45 | 44 | exp5c | ⊢ ( 𝑢 ∈ ω → ( 𝑣 ∈ 𝑓 → ( 𝑣 ∈ 𝑥 → ( 𝑓 ∈ 𝑥 → ( ( 𝐹 ‘ suc 𝑢 ) = 𝑥 → 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) ) ) ) ) |
| 46 | 45 | com34 | ⊢ ( 𝑢 ∈ ω → ( 𝑣 ∈ 𝑓 → ( 𝑓 ∈ 𝑥 → ( 𝑣 ∈ 𝑥 → ( ( 𝐹 ‘ suc 𝑢 ) = 𝑥 → 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) ) ) ) ) |
| 47 | 46 | impd | ⊢ ( 𝑢 ∈ ω → ( ( 𝑣 ∈ 𝑓 ∧ 𝑓 ∈ 𝑥 ) → ( 𝑣 ∈ 𝑥 → ( ( 𝐹 ‘ suc 𝑢 ) = 𝑥 → 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) ) ) ) |
| 48 | 47 | exlimdv | ⊢ ( 𝑢 ∈ ω → ( ∃ 𝑓 ( 𝑣 ∈ 𝑓 ∧ 𝑓 ∈ 𝑥 ) → ( 𝑣 ∈ 𝑥 → ( ( 𝐹 ‘ suc 𝑢 ) = 𝑥 → 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) ) ) ) |
| 49 | 30 48 | sylan9r | ⊢ ( ( 𝑢 ∈ ω ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝑣 ∈ 𝑥 → ( 𝑣 ∈ 𝑥 → ( ( 𝐹 ‘ suc 𝑢 ) = 𝑥 → 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) ) ) ) |
| 50 | 49 | pm2.43d | ⊢ ( ( 𝑢 ∈ ω ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝑣 ∈ 𝑥 → ( ( 𝐹 ‘ suc 𝑢 ) = 𝑥 → 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) ) ) |
| 51 | id | ⊢ ( ( ( 𝐹 ‘ suc 𝑢 ) = 𝑥 → 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) → ( ( 𝐹 ‘ suc 𝑢 ) = 𝑥 → 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) ) | |
| 52 | 51 | necon3bd | ⊢ ( ( ( 𝐹 ‘ suc 𝑢 ) = 𝑥 → 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) → ( ¬ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) → ( 𝐹 ‘ suc 𝑢 ) ≠ 𝑥 ) ) |
| 53 | 50 52 | syl6 | ⊢ ( ( 𝑢 ∈ ω ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝑣 ∈ 𝑥 → ( ¬ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) → ( 𝐹 ‘ suc 𝑢 ) ≠ 𝑥 ) ) ) |
| 54 | 53 | impd | ⊢ ( ( 𝑢 ∈ ω ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( ( 𝑣 ∈ 𝑥 ∧ ¬ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) → ( 𝐹 ‘ suc 𝑢 ) ≠ 𝑥 ) ) |
| 55 | 54 | exlimdv | ⊢ ( ( 𝑢 ∈ ω ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( ∃ 𝑣 ( 𝑣 ∈ 𝑥 ∧ ¬ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) → ( 𝐹 ‘ suc 𝑢 ) ≠ 𝑥 ) ) |
| 56 | 27 55 | syl5 | ⊢ ( ( 𝑢 ∈ ω ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( ( ( 𝐹 ‘ 𝑢 ) ⊆ 𝑥 ∧ ( 𝐹 ‘ 𝑢 ) ≠ 𝑥 ) → ( 𝐹 ‘ suc 𝑢 ) ≠ 𝑥 ) ) |
| 57 | 24 56 | sylani | ⊢ ( ( 𝑢 ∈ ω ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( ( 𝑢 ∈ ω ∧ ( 𝐹 ‘ 𝑢 ) ≠ 𝑥 ) → ( 𝐹 ‘ suc 𝑢 ) ≠ 𝑥 ) ) |
| 58 | 57 | exp4b | ⊢ ( 𝑢 ∈ ω → ( 𝑥 ⊆ ∪ 𝑥 → ( 𝑢 ∈ ω → ( ( 𝐹 ‘ 𝑢 ) ≠ 𝑥 → ( 𝐹 ‘ suc 𝑢 ) ≠ 𝑥 ) ) ) ) |
| 59 | 58 | pm2.43a | ⊢ ( 𝑢 ∈ ω → ( 𝑥 ⊆ ∪ 𝑥 → ( ( 𝐹 ‘ 𝑢 ) ≠ 𝑥 → ( 𝐹 ‘ suc 𝑢 ) ≠ 𝑥 ) ) ) |
| 60 | 59 | adantld | ⊢ ( 𝑢 ∈ ω → ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( ( 𝐹 ‘ 𝑢 ) ≠ 𝑥 → ( 𝐹 ‘ suc 𝑢 ) ≠ 𝑥 ) ) ) |
| 61 | 60 | a2d | ⊢ ( 𝑢 ∈ ω → ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝑢 ) ≠ 𝑥 ) → ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ suc 𝑢 ) ≠ 𝑥 ) ) ) |
| 62 | 7 10 13 16 22 61 | finds | ⊢ ( 𝐴 ∈ ω → ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝐴 ) ≠ 𝑥 ) ) |
| 63 | 62 | com12 | ⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐴 ∈ ω → ( 𝐹 ‘ 𝐴 ) ≠ 𝑥 ) ) |