This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. In the proof, we invoke the Axiom of Regularity in the form of zfreg . (Contributed by NM, 29-Oct-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | inf3lem.1 | |- G = ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) |
|
| inf3lem.2 | |- F = ( rec ( G , (/) ) |` _om ) |
||
| inf3lem.3 | |- A e. _V |
||
| inf3lem.4 | |- B e. _V |
||
| Assertion | inf3lem3 | |- ( ( x =/= (/) /\ x C_ U. x ) -> ( A e. _om -> ( F ` A ) =/= ( F ` suc A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inf3lem.1 | |- G = ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) |
|
| 2 | inf3lem.2 | |- F = ( rec ( G , (/) ) |` _om ) |
|
| 3 | inf3lem.3 | |- A e. _V |
|
| 4 | inf3lem.4 | |- B e. _V |
|
| 5 | 1 2 3 4 | inf3lemd | |- ( A e. _om -> ( F ` A ) C_ x ) |
| 6 | 1 2 3 4 | inf3lem2 | |- ( ( x =/= (/) /\ x C_ U. x ) -> ( A e. _om -> ( F ` A ) =/= x ) ) |
| 7 | 6 | com12 | |- ( A e. _om -> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` A ) =/= x ) ) |
| 8 | pssdifn0 | |- ( ( ( F ` A ) C_ x /\ ( F ` A ) =/= x ) -> ( x \ ( F ` A ) ) =/= (/) ) |
|
| 9 | 5 7 8 | syl6an | |- ( A e. _om -> ( ( x =/= (/) /\ x C_ U. x ) -> ( x \ ( F ` A ) ) =/= (/) ) ) |
| 10 | vex | |- x e. _V |
|
| 11 | 10 | difexi | |- ( x \ ( F ` A ) ) e. _V |
| 12 | zfreg | |- ( ( ( x \ ( F ` A ) ) e. _V /\ ( x \ ( F ` A ) ) =/= (/) ) -> E. v e. ( x \ ( F ` A ) ) ( v i^i ( x \ ( F ` A ) ) ) = (/) ) |
|
| 13 | 11 12 | mpan | |- ( ( x \ ( F ` A ) ) =/= (/) -> E. v e. ( x \ ( F ` A ) ) ( v i^i ( x \ ( F ` A ) ) ) = (/) ) |
| 14 | eldifi | |- ( v e. ( x \ ( F ` A ) ) -> v e. x ) |
|
| 15 | inssdif0 | |- ( ( v i^i x ) C_ ( F ` A ) <-> ( v i^i ( x \ ( F ` A ) ) ) = (/) ) |
|
| 16 | 15 | biimpri | |- ( ( v i^i ( x \ ( F ` A ) ) ) = (/) -> ( v i^i x ) C_ ( F ` A ) ) |
| 17 | 14 16 | anim12i | |- ( ( v e. ( x \ ( F ` A ) ) /\ ( v i^i ( x \ ( F ` A ) ) ) = (/) ) -> ( v e. x /\ ( v i^i x ) C_ ( F ` A ) ) ) |
| 18 | vex | |- v e. _V |
|
| 19 | fvex | |- ( F ` A ) e. _V |
|
| 20 | 1 2 18 19 | inf3lema | |- ( v e. ( G ` ( F ` A ) ) <-> ( v e. x /\ ( v i^i x ) C_ ( F ` A ) ) ) |
| 21 | 17 20 | sylibr | |- ( ( v e. ( x \ ( F ` A ) ) /\ ( v i^i ( x \ ( F ` A ) ) ) = (/) ) -> v e. ( G ` ( F ` A ) ) ) |
| 22 | 1 2 3 4 | inf3lemc | |- ( A e. _om -> ( F ` suc A ) = ( G ` ( F ` A ) ) ) |
| 23 | 22 | eleq2d | |- ( A e. _om -> ( v e. ( F ` suc A ) <-> v e. ( G ` ( F ` A ) ) ) ) |
| 24 | 21 23 | imbitrrid | |- ( A e. _om -> ( ( v e. ( x \ ( F ` A ) ) /\ ( v i^i ( x \ ( F ` A ) ) ) = (/) ) -> v e. ( F ` suc A ) ) ) |
| 25 | eldifn | |- ( v e. ( x \ ( F ` A ) ) -> -. v e. ( F ` A ) ) |
|
| 26 | 25 | adantr | |- ( ( v e. ( x \ ( F ` A ) ) /\ ( v i^i ( x \ ( F ` A ) ) ) = (/) ) -> -. v e. ( F ` A ) ) |
| 27 | 24 26 | jca2 | |- ( A e. _om -> ( ( v e. ( x \ ( F ` A ) ) /\ ( v i^i ( x \ ( F ` A ) ) ) = (/) ) -> ( v e. ( F ` suc A ) /\ -. v e. ( F ` A ) ) ) ) |
| 28 | eleq2 | |- ( ( F ` A ) = ( F ` suc A ) -> ( v e. ( F ` A ) <-> v e. ( F ` suc A ) ) ) |
|
| 29 | 28 | biimprd | |- ( ( F ` A ) = ( F ` suc A ) -> ( v e. ( F ` suc A ) -> v e. ( F ` A ) ) ) |
| 30 | iman | |- ( ( v e. ( F ` suc A ) -> v e. ( F ` A ) ) <-> -. ( v e. ( F ` suc A ) /\ -. v e. ( F ` A ) ) ) |
|
| 31 | 29 30 | sylib | |- ( ( F ` A ) = ( F ` suc A ) -> -. ( v e. ( F ` suc A ) /\ -. v e. ( F ` A ) ) ) |
| 32 | 31 | necon2ai | |- ( ( v e. ( F ` suc A ) /\ -. v e. ( F ` A ) ) -> ( F ` A ) =/= ( F ` suc A ) ) |
| 33 | 27 32 | syl6 | |- ( A e. _om -> ( ( v e. ( x \ ( F ` A ) ) /\ ( v i^i ( x \ ( F ` A ) ) ) = (/) ) -> ( F ` A ) =/= ( F ` suc A ) ) ) |
| 34 | 33 | expd | |- ( A e. _om -> ( v e. ( x \ ( F ` A ) ) -> ( ( v i^i ( x \ ( F ` A ) ) ) = (/) -> ( F ` A ) =/= ( F ` suc A ) ) ) ) |
| 35 | 34 | rexlimdv | |- ( A e. _om -> ( E. v e. ( x \ ( F ` A ) ) ( v i^i ( x \ ( F ` A ) ) ) = (/) -> ( F ` A ) =/= ( F ` suc A ) ) ) |
| 36 | 13 35 | syl5 | |- ( A e. _om -> ( ( x \ ( F ` A ) ) =/= (/) -> ( F ` A ) =/= ( F ` suc A ) ) ) |
| 37 | 9 36 | syldc | |- ( ( x =/= (/) /\ x C_ U. x ) -> ( A e. _om -> ( F ` A ) =/= ( F ` suc A ) ) ) |