This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. (Contributed by NM, 29-Oct-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | inf3lem.1 | ⊢ 𝐺 = ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) | |
| inf3lem.2 | ⊢ 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω ) | ||
| inf3lem.3 | ⊢ 𝐴 ∈ V | ||
| inf3lem.4 | ⊢ 𝐵 ∈ V | ||
| Assertion | inf3lem4 | ⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐴 ∈ ω → ( 𝐹 ‘ 𝐴 ) ⊊ ( 𝐹 ‘ suc 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inf3lem.1 | ⊢ 𝐺 = ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) | |
| 2 | inf3lem.2 | ⊢ 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω ) | |
| 3 | inf3lem.3 | ⊢ 𝐴 ∈ V | |
| 4 | inf3lem.4 | ⊢ 𝐵 ∈ V | |
| 5 | 1 2 3 4 | inf3lem1 | ⊢ ( 𝐴 ∈ ω → ( 𝐹 ‘ 𝐴 ) ⊆ ( 𝐹 ‘ suc 𝐴 ) ) |
| 6 | 5 | a1i | ⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐴 ∈ ω → ( 𝐹 ‘ 𝐴 ) ⊆ ( 𝐹 ‘ suc 𝐴 ) ) ) |
| 7 | 1 2 3 4 | inf3lem3 | ⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐴 ∈ ω → ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ suc 𝐴 ) ) ) |
| 8 | 6 7 | jcad | ⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐴 ∈ ω → ( ( 𝐹 ‘ 𝐴 ) ⊆ ( 𝐹 ‘ suc 𝐴 ) ∧ ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ suc 𝐴 ) ) ) ) |
| 9 | df-pss | ⊢ ( ( 𝐹 ‘ 𝐴 ) ⊊ ( 𝐹 ‘ suc 𝐴 ) ↔ ( ( 𝐹 ‘ 𝐴 ) ⊆ ( 𝐹 ‘ suc 𝐴 ) ∧ ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ suc 𝐴 ) ) ) | |
| 10 | 8 9 | imbitrrdi | ⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐴 ∈ ω → ( 𝐹 ‘ 𝐴 ) ⊊ ( 𝐹 ‘ suc 𝐴 ) ) ) |