This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. (Contributed by NM, 28-Oct-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | inf3lem.1 | ⊢ 𝐺 = ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) | |
| inf3lem.2 | ⊢ 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω ) | ||
| inf3lem.3 | ⊢ 𝐴 ∈ V | ||
| inf3lem.4 | ⊢ 𝐵 ∈ V | ||
| Assertion | inf3lemc | ⊢ ( 𝐴 ∈ ω → ( 𝐹 ‘ suc 𝐴 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inf3lem.1 | ⊢ 𝐺 = ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) | |
| 2 | inf3lem.2 | ⊢ 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω ) | |
| 3 | inf3lem.3 | ⊢ 𝐴 ∈ V | |
| 4 | inf3lem.4 | ⊢ 𝐵 ∈ V | |
| 5 | frsuc | ⊢ ( 𝐴 ∈ ω → ( ( rec ( 𝐺 , ∅ ) ↾ ω ) ‘ suc 𝐴 ) = ( 𝐺 ‘ ( ( rec ( 𝐺 , ∅ ) ↾ ω ) ‘ 𝐴 ) ) ) | |
| 6 | 2 | fveq1i | ⊢ ( 𝐹 ‘ suc 𝐴 ) = ( ( rec ( 𝐺 , ∅ ) ↾ ω ) ‘ suc 𝐴 ) |
| 7 | 2 | fveq1i | ⊢ ( 𝐹 ‘ 𝐴 ) = ( ( rec ( 𝐺 , ∅ ) ↾ ω ) ‘ 𝐴 ) |
| 8 | 7 | fveq2i | ⊢ ( 𝐺 ‘ ( 𝐹 ‘ 𝐴 ) ) = ( 𝐺 ‘ ( ( rec ( 𝐺 , ∅ ) ↾ ω ) ‘ 𝐴 ) ) |
| 9 | 5 6 8 | 3eqtr4g | ⊢ ( 𝐴 ∈ ω → ( 𝐹 ‘ suc 𝐴 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝐴 ) ) ) |