This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. (Contributed by NM, 28-Oct-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | inf3lem.1 | ⊢ 𝐺 = ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) | |
| inf3lem.2 | ⊢ 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω ) | ||
| inf3lem.3 | ⊢ 𝐴 ∈ V | ||
| inf3lem.4 | ⊢ 𝐵 ∈ V | ||
| Assertion | inf3lemd | ⊢ ( 𝐴 ∈ ω → ( 𝐹 ‘ 𝐴 ) ⊆ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inf3lem.1 | ⊢ 𝐺 = ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) | |
| 2 | inf3lem.2 | ⊢ 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω ) | |
| 3 | inf3lem.3 | ⊢ 𝐴 ∈ V | |
| 4 | inf3lem.4 | ⊢ 𝐵 ∈ V | |
| 5 | fveq2 | ⊢ ( 𝐴 = ∅ → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ ∅ ) ) | |
| 6 | 1 2 3 4 | inf3lemb | ⊢ ( 𝐹 ‘ ∅ ) = ∅ |
| 7 | 5 6 | eqtrdi | ⊢ ( 𝐴 = ∅ → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
| 8 | 0ss | ⊢ ∅ ⊆ 𝑥 | |
| 9 | 7 8 | eqsstrdi | ⊢ ( 𝐴 = ∅ → ( 𝐹 ‘ 𝐴 ) ⊆ 𝑥 ) |
| 10 | 9 | a1d | ⊢ ( 𝐴 = ∅ → ( 𝐴 ∈ ω → ( 𝐹 ‘ 𝐴 ) ⊆ 𝑥 ) ) |
| 11 | nnsuc | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐴 ≠ ∅ ) → ∃ 𝑣 ∈ ω 𝐴 = suc 𝑣 ) | |
| 12 | vex | ⊢ 𝑣 ∈ V | |
| 13 | 1 2 12 4 | inf3lemc | ⊢ ( 𝑣 ∈ ω → ( 𝐹 ‘ suc 𝑣 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑣 ) ) ) |
| 14 | 13 | eleq2d | ⊢ ( 𝑣 ∈ ω → ( 𝑢 ∈ ( 𝐹 ‘ suc 𝑣 ) ↔ 𝑢 ∈ ( 𝐺 ‘ ( 𝐹 ‘ 𝑣 ) ) ) ) |
| 15 | vex | ⊢ 𝑢 ∈ V | |
| 16 | fvex | ⊢ ( 𝐹 ‘ 𝑣 ) ∈ V | |
| 17 | 1 2 15 16 | inf3lema | ⊢ ( 𝑢 ∈ ( 𝐺 ‘ ( 𝐹 ‘ 𝑣 ) ) ↔ ( 𝑢 ∈ 𝑥 ∧ ( 𝑢 ∩ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑣 ) ) ) |
| 18 | 17 | simplbi | ⊢ ( 𝑢 ∈ ( 𝐺 ‘ ( 𝐹 ‘ 𝑣 ) ) → 𝑢 ∈ 𝑥 ) |
| 19 | 14 18 | biimtrdi | ⊢ ( 𝑣 ∈ ω → ( 𝑢 ∈ ( 𝐹 ‘ suc 𝑣 ) → 𝑢 ∈ 𝑥 ) ) |
| 20 | 19 | ssrdv | ⊢ ( 𝑣 ∈ ω → ( 𝐹 ‘ suc 𝑣 ) ⊆ 𝑥 ) |
| 21 | fveq2 | ⊢ ( 𝐴 = suc 𝑣 → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ suc 𝑣 ) ) | |
| 22 | 21 | sseq1d | ⊢ ( 𝐴 = suc 𝑣 → ( ( 𝐹 ‘ 𝐴 ) ⊆ 𝑥 ↔ ( 𝐹 ‘ suc 𝑣 ) ⊆ 𝑥 ) ) |
| 23 | 20 22 | syl5ibrcom | ⊢ ( 𝑣 ∈ ω → ( 𝐴 = suc 𝑣 → ( 𝐹 ‘ 𝐴 ) ⊆ 𝑥 ) ) |
| 24 | 23 | rexlimiv | ⊢ ( ∃ 𝑣 ∈ ω 𝐴 = suc 𝑣 → ( 𝐹 ‘ 𝐴 ) ⊆ 𝑥 ) |
| 25 | 11 24 | syl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐴 ≠ ∅ ) → ( 𝐹 ‘ 𝐴 ) ⊆ 𝑥 ) |
| 26 | 25 | expcom | ⊢ ( 𝐴 ≠ ∅ → ( 𝐴 ∈ ω → ( 𝐹 ‘ 𝐴 ) ⊆ 𝑥 ) ) |
| 27 | 10 26 | pm2.61ine | ⊢ ( 𝐴 ∈ ω → ( 𝐹 ‘ 𝐴 ) ⊆ 𝑥 ) |