This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Axiom of Regularity using abbreviations. Axiom 6 of TakeutiZaring p. 21. This is called the "weak form". Axiom Reg of BellMachover p. 480. There is also a "strong form", not requiring that A be a set, that can be proved with more difficulty (see zfregs ). (Contributed by NM, 26-Nov-1995) Replace sethood hypothesis with sethood antecedent. (Revised by BJ, 27-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zfreg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) | |
| 2 | 1 | biimpi | ⊢ ( 𝐴 ≠ ∅ → ∃ 𝑥 𝑥 ∈ 𝐴 ) |
| 3 | 2 | anim2i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) → ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 𝑥 ∈ 𝐴 ) ) |
| 4 | zfregcl | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 𝑥 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴 ) ) | |
| 5 | 4 | imp | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 𝑥 ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴 ) |
| 6 | disj | ⊢ ( ( 𝑥 ∩ 𝐴 ) = ∅ ↔ ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴 ) | |
| 7 | 6 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴 ) |
| 8 | 7 | biimpri | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) |
| 9 | 3 5 8 | 3syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) |