This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. (Contributed by NM, 28-Oct-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | inf3lem.1 | ⊢ 𝐺 = ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) | |
| inf3lem.2 | ⊢ 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω ) | ||
| inf3lem.3 | ⊢ 𝐴 ∈ V | ||
| inf3lem.4 | ⊢ 𝐵 ∈ V | ||
| Assertion | inf3lema | ⊢ ( 𝐴 ∈ ( 𝐺 ‘ 𝐵 ) ↔ ( 𝐴 ∈ 𝑥 ∧ ( 𝐴 ∩ 𝑥 ) ⊆ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inf3lem.1 | ⊢ 𝐺 = ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) | |
| 2 | inf3lem.2 | ⊢ 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω ) | |
| 3 | inf3lem.3 | ⊢ 𝐴 ∈ V | |
| 4 | inf3lem.4 | ⊢ 𝐵 ∈ V | |
| 5 | ineq1 | ⊢ ( 𝑓 = 𝐴 → ( 𝑓 ∩ 𝑥 ) = ( 𝐴 ∩ 𝑥 ) ) | |
| 6 | 5 | sseq1d | ⊢ ( 𝑓 = 𝐴 → ( ( 𝑓 ∩ 𝑥 ) ⊆ 𝐵 ↔ ( 𝐴 ∩ 𝑥 ) ⊆ 𝐵 ) ) |
| 7 | sseq2 | ⊢ ( 𝑣 = 𝐵 → ( ( 𝑓 ∩ 𝑥 ) ⊆ 𝑣 ↔ ( 𝑓 ∩ 𝑥 ) ⊆ 𝐵 ) ) | |
| 8 | 7 | rabbidv | ⊢ ( 𝑣 = 𝐵 → { 𝑓 ∈ 𝑥 ∣ ( 𝑓 ∩ 𝑥 ) ⊆ 𝑣 } = { 𝑓 ∈ 𝑥 ∣ ( 𝑓 ∩ 𝑥 ) ⊆ 𝐵 } ) |
| 9 | sseq2 | ⊢ ( 𝑦 = 𝑣 → ( ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 ↔ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑣 ) ) | |
| 10 | 9 | rabbidv | ⊢ ( 𝑦 = 𝑣 → { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } = { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑣 } ) |
| 11 | ineq1 | ⊢ ( 𝑤 = 𝑓 → ( 𝑤 ∩ 𝑥 ) = ( 𝑓 ∩ 𝑥 ) ) | |
| 12 | 11 | sseq1d | ⊢ ( 𝑤 = 𝑓 → ( ( 𝑤 ∩ 𝑥 ) ⊆ 𝑣 ↔ ( 𝑓 ∩ 𝑥 ) ⊆ 𝑣 ) ) |
| 13 | 12 | cbvrabv | ⊢ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑣 } = { 𝑓 ∈ 𝑥 ∣ ( 𝑓 ∩ 𝑥 ) ⊆ 𝑣 } |
| 14 | 10 13 | eqtrdi | ⊢ ( 𝑦 = 𝑣 → { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } = { 𝑓 ∈ 𝑥 ∣ ( 𝑓 ∩ 𝑥 ) ⊆ 𝑣 } ) |
| 15 | 14 | cbvmptv | ⊢ ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) = ( 𝑣 ∈ V ↦ { 𝑓 ∈ 𝑥 ∣ ( 𝑓 ∩ 𝑥 ) ⊆ 𝑣 } ) |
| 16 | 1 15 | eqtri | ⊢ 𝐺 = ( 𝑣 ∈ V ↦ { 𝑓 ∈ 𝑥 ∣ ( 𝑓 ∩ 𝑥 ) ⊆ 𝑣 } ) |
| 17 | vex | ⊢ 𝑥 ∈ V | |
| 18 | 17 | rabex | ⊢ { 𝑓 ∈ 𝑥 ∣ ( 𝑓 ∩ 𝑥 ) ⊆ 𝐵 } ∈ V |
| 19 | 8 16 18 | fvmpt | ⊢ ( 𝐵 ∈ V → ( 𝐺 ‘ 𝐵 ) = { 𝑓 ∈ 𝑥 ∣ ( 𝑓 ∩ 𝑥 ) ⊆ 𝐵 } ) |
| 20 | 4 19 | ax-mp | ⊢ ( 𝐺 ‘ 𝐵 ) = { 𝑓 ∈ 𝑥 ∣ ( 𝑓 ∩ 𝑥 ) ⊆ 𝐵 } |
| 21 | 6 20 | elrab2 | ⊢ ( 𝐴 ∈ ( 𝐺 ‘ 𝐵 ) ↔ ( 𝐴 ∈ 𝑥 ∧ ( 𝐴 ∩ 𝑥 ) ⊆ 𝐵 ) ) |