This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Principle of Finite Induction on positive integers. (Contributed by NM, 23-Mar-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | indpi.1 | |- ( x = 1o -> ( ph <-> ps ) ) |
|
| indpi.2 | |- ( x = y -> ( ph <-> ch ) ) |
||
| indpi.3 | |- ( x = ( y +N 1o ) -> ( ph <-> th ) ) |
||
| indpi.4 | |- ( x = A -> ( ph <-> ta ) ) |
||
| indpi.5 | |- ps |
||
| indpi.6 | |- ( y e. N. -> ( ch -> th ) ) |
||
| Assertion | indpi | |- ( A e. N. -> ta ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indpi.1 | |- ( x = 1o -> ( ph <-> ps ) ) |
|
| 2 | indpi.2 | |- ( x = y -> ( ph <-> ch ) ) |
|
| 3 | indpi.3 | |- ( x = ( y +N 1o ) -> ( ph <-> th ) ) |
|
| 4 | indpi.4 | |- ( x = A -> ( ph <-> ta ) ) |
|
| 5 | indpi.5 | |- ps |
|
| 6 | indpi.6 | |- ( y e. N. -> ( ch -> th ) ) |
|
| 7 | 1oex | |- 1o e. _V |
|
| 8 | 7 | eqvinc | |- ( 1o = A <-> E. x ( x = 1o /\ x = A ) ) |
| 9 | 5 1 | mpbiri | |- ( x = 1o -> ph ) |
| 10 | 8 4 9 | gencl | |- ( 1o = A -> ta ) |
| 11 | 10 | eqcoms | |- ( A = 1o -> ta ) |
| 12 | 11 | a1i | |- ( A e. N. -> ( A = 1o -> ta ) ) |
| 13 | pinn | |- ( A e. N. -> A e. _om ) |
|
| 14 | elni2 | |- ( A e. N. <-> ( A e. _om /\ (/) e. A ) ) |
|
| 15 | nnord | |- ( A e. _om -> Ord A ) |
|
| 16 | ordsucss | |- ( Ord A -> ( (/) e. A -> suc (/) C_ A ) ) |
|
| 17 | 15 16 | syl | |- ( A e. _om -> ( (/) e. A -> suc (/) C_ A ) ) |
| 18 | df-1o | |- 1o = suc (/) |
|
| 19 | 18 | sseq1i | |- ( 1o C_ A <-> suc (/) C_ A ) |
| 20 | 17 19 | imbitrrdi | |- ( A e. _om -> ( (/) e. A -> 1o C_ A ) ) |
| 21 | 20 | imp | |- ( ( A e. _om /\ (/) e. A ) -> 1o C_ A ) |
| 22 | 14 21 | sylbi | |- ( A e. N. -> 1o C_ A ) |
| 23 | 1onn | |- 1o e. _om |
|
| 24 | eleq1 | |- ( x = 1o -> ( x e. N. <-> 1o e. N. ) ) |
|
| 25 | breq2 | |- ( x = 1o -> ( 1o |
|
| 26 | 24 25 | anbi12d | |- ( x = 1o -> ( ( x e. N. /\ 1o |
| 27 | 26 1 | imbi12d | |- ( x = 1o -> ( ( ( x e. N. /\ 1o |
| 28 | eleq1 | |- ( x = y -> ( x e. N. <-> y e. N. ) ) |
|
| 29 | breq2 | |- ( x = y -> ( 1o |
|
| 30 | 28 29 | anbi12d | |- ( x = y -> ( ( x e. N. /\ 1o |
| 31 | 30 2 | imbi12d | |- ( x = y -> ( ( ( x e. N. /\ 1o |
| 32 | pinn | |- ( x e. N. -> x e. _om ) |
|
| 33 | eleq1 | |- ( x = suc y -> ( x e. _om <-> suc y e. _om ) ) |
|
| 34 | peano2b | |- ( y e. _om <-> suc y e. _om ) |
|
| 35 | 33 34 | bitr4di | |- ( x = suc y -> ( x e. _om <-> y e. _om ) ) |
| 36 | 32 35 | imbitrid | |- ( x = suc y -> ( x e. N. -> y e. _om ) ) |
| 37 | 36 | adantrd | |- ( x = suc y -> ( ( x e. N. /\ 1o |
| 38 | 1pi | |- 1o e. N. |
|
| 39 | ltpiord | |- ( ( 1o e. N. /\ x e. N. ) -> ( 1o |
|
| 40 | 38 39 | mpan | |- ( x e. N. -> ( 1o |
| 41 | 40 | biimpa | |- ( ( x e. N. /\ 1o |
| 42 | eleq2 | |- ( x = suc y -> ( 1o e. x <-> 1o e. suc y ) ) |
|
| 43 | elsuci | |- ( 1o e. suc y -> ( 1o e. y \/ 1o = y ) ) |
|
| 44 | ne0i | |- ( 1o e. y -> y =/= (/) ) |
|
| 45 | 0lt1o | |- (/) e. 1o |
|
| 46 | eleq2 | |- ( 1o = y -> ( (/) e. 1o <-> (/) e. y ) ) |
|
| 47 | 45 46 | mpbii | |- ( 1o = y -> (/) e. y ) |
| 48 | 47 | ne0d | |- ( 1o = y -> y =/= (/) ) |
| 49 | 44 48 | jaoi | |- ( ( 1o e. y \/ 1o = y ) -> y =/= (/) ) |
| 50 | 43 49 | syl | |- ( 1o e. suc y -> y =/= (/) ) |
| 51 | 42 50 | biimtrdi | |- ( x = suc y -> ( 1o e. x -> y =/= (/) ) ) |
| 52 | 41 51 | syl5 | |- ( x = suc y -> ( ( x e. N. /\ 1o |
| 53 | 37 52 | jcad | |- ( x = suc y -> ( ( x e. N. /\ 1o |
| 54 | elni | |- ( y e. N. <-> ( y e. _om /\ y =/= (/) ) ) |
|
| 55 | 53 54 | imbitrrdi | |- ( x = suc y -> ( ( x e. N. /\ 1o |
| 56 | simpr | |- ( ( x e. N. /\ 1o |
|
| 57 | breq2 | |- ( x = suc y -> ( 1o |
|
| 58 | 56 57 | imbitrid | |- ( x = suc y -> ( ( x e. N. /\ 1o |
| 59 | 55 58 | jcad | |- ( x = suc y -> ( ( x e. N. /\ 1o |
| 60 | addclpi | |- ( ( y e. N. /\ 1o e. N. ) -> ( y +N 1o ) e. N. ) |
|
| 61 | 38 60 | mpan2 | |- ( y e. N. -> ( y +N 1o ) e. N. ) |
| 62 | addpiord | |- ( ( y e. N. /\ 1o e. N. ) -> ( y +N 1o ) = ( y +o 1o ) ) |
|
| 63 | 38 62 | mpan2 | |- ( y e. N. -> ( y +N 1o ) = ( y +o 1o ) ) |
| 64 | pion | |- ( y e. N. -> y e. On ) |
|
| 65 | oa1suc | |- ( y e. On -> ( y +o 1o ) = suc y ) |
|
| 66 | 64 65 | syl | |- ( y e. N. -> ( y +o 1o ) = suc y ) |
| 67 | 63 66 | eqtrd | |- ( y e. N. -> ( y +N 1o ) = suc y ) |
| 68 | 67 | eqeq2d | |- ( y e. N. -> ( x = ( y +N 1o ) <-> x = suc y ) ) |
| 69 | 68 | biimparc | |- ( ( x = suc y /\ y e. N. ) -> x = ( y +N 1o ) ) |
| 70 | 69 | eleq1d | |- ( ( x = suc y /\ y e. N. ) -> ( x e. N. <-> ( y +N 1o ) e. N. ) ) |
| 71 | 61 70 | imbitrrid | |- ( ( x = suc y /\ y e. N. ) -> ( y e. N. -> x e. N. ) ) |
| 72 | 71 | ex | |- ( x = suc y -> ( y e. N. -> ( y e. N. -> x e. N. ) ) ) |
| 73 | 72 | pm2.43d | |- ( x = suc y -> ( y e. N. -> x e. N. ) ) |
| 74 | 57 | biimprd | |- ( x = suc y -> ( 1o |
| 75 | 73 74 | anim12d | |- ( x = suc y -> ( ( y e. N. /\ 1o |
| 76 | 59 75 | impbid | |- ( x = suc y -> ( ( x e. N. /\ 1o |
| 77 | 76 | imbi1d | |- ( x = suc y -> ( ( ( x e. N. /\ 1o |
| 78 | 68 3 | biimtrrdi | |- ( y e. N. -> ( x = suc y -> ( ph <-> th ) ) ) |
| 79 | 78 | adantr | |- ( ( y e. N. /\ 1o |
| 80 | 79 | com12 | |- ( x = suc y -> ( ( y e. N. /\ 1o |
| 81 | 80 | pm5.74d | |- ( x = suc y -> ( ( ( y e. N. /\ 1o |
| 82 | 77 81 | bitrd | |- ( x = suc y -> ( ( ( x e. N. /\ 1o |
| 83 | eleq1 | |- ( x = A -> ( x e. N. <-> A e. N. ) ) |
|
| 84 | breq2 | |- ( x = A -> ( 1o |
|
| 85 | 83 84 | anbi12d | |- ( x = A -> ( ( x e. N. /\ 1o |
| 86 | 85 4 | imbi12d | |- ( x = A -> ( ( ( x e. N. /\ 1o |
| 87 | 5 | 2a1i | |- ( 1o e. _om -> ( ( 1o e. N. /\ 1o |
| 88 | ltpiord | |- ( ( 1o e. N. /\ y e. N. ) -> ( 1o |
|
| 89 | 38 88 | mpan | |- ( y e. N. -> ( 1o |
| 90 | 89 | pm5.32i | |- ( ( y e. N. /\ 1o |
| 91 | 90 | simplbi2 | |- ( y e. N. -> ( 1o e. y -> ( y e. N. /\ 1o |
| 92 | 91 | imim1d | |- ( y e. N. -> ( ( ( y e. N. /\ 1o |
| 93 | ltrelpi | |- |
|
| 94 | 93 | brel | |- ( 1o |
| 95 | ltpiord | |- ( ( 1o e. N. /\ suc y e. N. ) -> ( 1o |
|
| 96 | 94 95 | syl | |- ( 1o |
| 97 | 96 | ibi | |- ( 1o |
| 98 | 7 | eqvinc | |- ( 1o = y <-> E. x ( x = 1o /\ x = y ) ) |
| 99 | 98 2 9 | gencl | |- ( 1o = y -> ch ) |
| 100 | jao | |- ( ( 1o e. y -> ch ) -> ( ( 1o = y -> ch ) -> ( ( 1o e. y \/ 1o = y ) -> ch ) ) ) |
|
| 101 | 99 100 | mpi | |- ( ( 1o e. y -> ch ) -> ( ( 1o e. y \/ 1o = y ) -> ch ) ) |
| 102 | 43 101 | syl5 | |- ( ( 1o e. y -> ch ) -> ( 1o e. suc y -> ch ) ) |
| 103 | 97 102 | syl5 | |- ( ( 1o e. y -> ch ) -> ( 1o |
| 104 | 92 103 | syl6com | |- ( ( ( y e. N. /\ 1o |
| 105 | 104 | impd | |- ( ( ( y e. N. /\ 1o |
| 106 | 18 | sseq1i | |- ( 1o C_ y <-> suc (/) C_ y ) |
| 107 | 0ex | |- (/) e. _V |
|
| 108 | sucssel | |- ( (/) e. _V -> ( suc (/) C_ y -> (/) e. y ) ) |
|
| 109 | 107 108 | ax-mp | |- ( suc (/) C_ y -> (/) e. y ) |
| 110 | 106 109 | sylbi | |- ( 1o C_ y -> (/) e. y ) |
| 111 | elni2 | |- ( y e. N. <-> ( y e. _om /\ (/) e. y ) ) |
|
| 112 | 111 6 | sylbir | |- ( ( y e. _om /\ (/) e. y ) -> ( ch -> th ) ) |
| 113 | 110 112 | sylan2 | |- ( ( y e. _om /\ 1o C_ y ) -> ( ch -> th ) ) |
| 114 | 105 113 | syl9r | |- ( ( y e. _om /\ 1o C_ y ) -> ( ( ( y e. N. /\ 1o |
| 115 | 114 | adantlr | |- ( ( ( y e. _om /\ 1o e. _om ) /\ 1o C_ y ) -> ( ( ( y e. N. /\ 1o |
| 116 | 27 31 82 86 87 115 | findsg | |- ( ( ( A e. _om /\ 1o e. _om ) /\ 1o C_ A ) -> ( ( A e. N. /\ 1o |
| 117 | 23 116 | mpanl2 | |- ( ( A e. _om /\ 1o C_ A ) -> ( ( A e. N. /\ 1o |
| 118 | 13 22 117 | syl2anc | |- ( A e. N. -> ( ( A e. N. /\ 1o |
| 119 | 118 | expd | |- ( A e. N. -> ( A e. N. -> ( 1o |
| 120 | 119 | pm2.43i | |- ( A e. N. -> ( 1o |
| 121 | nlt1pi | |- -. A |
|
| 122 | ltsopi | |- |
|
| 123 | sotric | |- ( ( |
|
| 124 | 122 123 | mpan | |- ( ( A e. N. /\ 1o e. N. ) -> ( A |
| 125 | 38 124 | mpan2 | |- ( A e. N. -> ( A |
| 126 | 121 125 | mtbii | |- ( A e. N. -> -. -. ( A = 1o \/ 1o |
| 127 | 126 | notnotrd | |- ( A e. N. -> ( A = 1o \/ 1o |
| 128 | 12 120 127 | mpjaod | |- ( A e. N. -> ta ) |