This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: No positive integer is less than one. (Contributed by NM, 23-Mar-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nlt1pi | ⊢ ¬ 𝐴 <N 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elni | ⊢ ( 𝐴 ∈ N ↔ ( 𝐴 ∈ ω ∧ 𝐴 ≠ ∅ ) ) | |
| 2 | 1 | simprbi | ⊢ ( 𝐴 ∈ N → 𝐴 ≠ ∅ ) |
| 3 | noel | ⊢ ¬ 𝐴 ∈ ∅ | |
| 4 | 1pi | ⊢ 1o ∈ N | |
| 5 | ltpiord | ⊢ ( ( 𝐴 ∈ N ∧ 1o ∈ N ) → ( 𝐴 <N 1o ↔ 𝐴 ∈ 1o ) ) | |
| 6 | 4 5 | mpan2 | ⊢ ( 𝐴 ∈ N → ( 𝐴 <N 1o ↔ 𝐴 ∈ 1o ) ) |
| 7 | df-1o | ⊢ 1o = suc ∅ | |
| 8 | 7 | eleq2i | ⊢ ( 𝐴 ∈ 1o ↔ 𝐴 ∈ suc ∅ ) |
| 9 | elsucg | ⊢ ( 𝐴 ∈ N → ( 𝐴 ∈ suc ∅ ↔ ( 𝐴 ∈ ∅ ∨ 𝐴 = ∅ ) ) ) | |
| 10 | 8 9 | bitrid | ⊢ ( 𝐴 ∈ N → ( 𝐴 ∈ 1o ↔ ( 𝐴 ∈ ∅ ∨ 𝐴 = ∅ ) ) ) |
| 11 | 6 10 | bitrd | ⊢ ( 𝐴 ∈ N → ( 𝐴 <N 1o ↔ ( 𝐴 ∈ ∅ ∨ 𝐴 = ∅ ) ) ) |
| 12 | 11 | biimpa | ⊢ ( ( 𝐴 ∈ N ∧ 𝐴 <N 1o ) → ( 𝐴 ∈ ∅ ∨ 𝐴 = ∅ ) ) |
| 13 | 12 | ord | ⊢ ( ( 𝐴 ∈ N ∧ 𝐴 <N 1o ) → ( ¬ 𝐴 ∈ ∅ → 𝐴 = ∅ ) ) |
| 14 | 3 13 | mpi | ⊢ ( ( 𝐴 ∈ N ∧ 𝐴 <N 1o ) → 𝐴 = ∅ ) |
| 15 | 14 | ex | ⊢ ( 𝐴 ∈ N → ( 𝐴 <N 1o → 𝐴 = ∅ ) ) |
| 16 | 15 | necon3ad | ⊢ ( 𝐴 ∈ N → ( 𝐴 ≠ ∅ → ¬ 𝐴 <N 1o ) ) |
| 17 | 2 16 | mpd | ⊢ ( 𝐴 ∈ N → ¬ 𝐴 <N 1o ) |
| 18 | ltrelpi | ⊢ <N ⊆ ( N × N ) | |
| 19 | 18 | brel | ⊢ ( 𝐴 <N 1o → ( 𝐴 ∈ N ∧ 1o ∈ N ) ) |
| 20 | 19 | simpld | ⊢ ( 𝐴 <N 1o → 𝐴 ∈ N ) |
| 21 | 20 | con3i | ⊢ ( ¬ 𝐴 ∈ N → ¬ 𝐴 <N 1o ) |
| 22 | 17 21 | pm2.61i | ⊢ ¬ 𝐴 <N 1o |