This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Positive integer addition in terms of ordinal addition. (Contributed by NM, 27-Aug-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addpiord | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 +N 𝐵 ) = ( 𝐴 +o 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ) | |
| 2 | fvres | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) → ( ( +o ↾ ( N × N ) ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( +o ‘ 〈 𝐴 , 𝐵 〉 ) ) | |
| 3 | df-ov | ⊢ ( 𝐴 +N 𝐵 ) = ( +N ‘ 〈 𝐴 , 𝐵 〉 ) | |
| 4 | df-pli | ⊢ +N = ( +o ↾ ( N × N ) ) | |
| 5 | 4 | fveq1i | ⊢ ( +N ‘ 〈 𝐴 , 𝐵 〉 ) = ( ( +o ↾ ( N × N ) ) ‘ 〈 𝐴 , 𝐵 〉 ) |
| 6 | 3 5 | eqtri | ⊢ ( 𝐴 +N 𝐵 ) = ( ( +o ↾ ( N × N ) ) ‘ 〈 𝐴 , 𝐵 〉 ) |
| 7 | df-ov | ⊢ ( 𝐴 +o 𝐵 ) = ( +o ‘ 〈 𝐴 , 𝐵 〉 ) | |
| 8 | 2 6 7 | 3eqtr4g | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) → ( 𝐴 +N 𝐵 ) = ( 𝐴 +o 𝐵 ) ) |
| 9 | 1 8 | syl | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 +N 𝐵 ) = ( 𝐴 +o 𝐵 ) ) |