This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group operation maps onto the group's underlying set. (Contributed by NM, 30-Oct-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | grpfo.1 | ⊢ 𝑋 = ran 𝐺 | |
| Assertion | grpofo | ⊢ ( 𝐺 ∈ GrpOp → 𝐺 : ( 𝑋 × 𝑋 ) –onto→ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpfo.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | 1 | isgrpo | ⊢ ( 𝐺 ∈ GrpOp → ( 𝐺 ∈ GrpOp ↔ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) ) |
| 3 | 2 | ibi | ⊢ ( 𝐺 ∈ GrpOp → ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) |
| 4 | 3 | simp1d | ⊢ ( 𝐺 ∈ GrpOp → 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
| 5 | 1 | eqcomi | ⊢ ran 𝐺 = 𝑋 |
| 6 | 4 5 | jctir | ⊢ ( 𝐺 ∈ GrpOp → ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ran 𝐺 = 𝑋 ) ) |
| 7 | dffo2 | ⊢ ( 𝐺 : ( 𝑋 × 𝑋 ) –onto→ 𝑋 ↔ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ran 𝐺 = 𝑋 ) ) | |
| 8 | 6 7 | sylibr | ⊢ ( 𝐺 ∈ GrpOp → 𝐺 : ( 𝑋 × 𝑋 ) –onto→ 𝑋 ) |