This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group identity element of Hilbert space vector addition is the zero vector. (Contributed by NM, 16-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hilid | ⊢ ( GId ‘ +ℎ ) = 0ℎ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hilablo | ⊢ +ℎ ∈ AbelOp | |
| 2 | ablogrpo | ⊢ ( +ℎ ∈ AbelOp → +ℎ ∈ GrpOp ) | |
| 3 | 1 2 | ax-mp | ⊢ +ℎ ∈ GrpOp |
| 4 | ax-hfvadd | ⊢ +ℎ : ( ℋ × ℋ ) ⟶ ℋ | |
| 5 | 4 | fdmi | ⊢ dom +ℎ = ( ℋ × ℋ ) |
| 6 | 3 5 | grporn | ⊢ ℋ = ran +ℎ |
| 7 | eqid | ⊢ ( GId ‘ +ℎ ) = ( GId ‘ +ℎ ) | |
| 8 | 6 7 | grpoidval | ⊢ ( +ℎ ∈ GrpOp → ( GId ‘ +ℎ ) = ( ℩ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑦 +ℎ 𝑥 ) = 𝑥 ) ) |
| 9 | 3 8 | ax-mp | ⊢ ( GId ‘ +ℎ ) = ( ℩ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑦 +ℎ 𝑥 ) = 𝑥 ) |
| 10 | hvaddlid | ⊢ ( 𝑥 ∈ ℋ → ( 0ℎ +ℎ 𝑥 ) = 𝑥 ) | |
| 11 | 10 | rgen | ⊢ ∀ 𝑥 ∈ ℋ ( 0ℎ +ℎ 𝑥 ) = 𝑥 |
| 12 | ax-hv0cl | ⊢ 0ℎ ∈ ℋ | |
| 13 | 6 | grpoideu | ⊢ ( +ℎ ∈ GrpOp → ∃! 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑦 +ℎ 𝑥 ) = 𝑥 ) |
| 14 | 3 13 | ax-mp | ⊢ ∃! 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑦 +ℎ 𝑥 ) = 𝑥 |
| 15 | oveq1 | ⊢ ( 𝑦 = 0ℎ → ( 𝑦 +ℎ 𝑥 ) = ( 0ℎ +ℎ 𝑥 ) ) | |
| 16 | 15 | eqeq1d | ⊢ ( 𝑦 = 0ℎ → ( ( 𝑦 +ℎ 𝑥 ) = 𝑥 ↔ ( 0ℎ +ℎ 𝑥 ) = 𝑥 ) ) |
| 17 | 16 | ralbidv | ⊢ ( 𝑦 = 0ℎ → ( ∀ 𝑥 ∈ ℋ ( 𝑦 +ℎ 𝑥 ) = 𝑥 ↔ ∀ 𝑥 ∈ ℋ ( 0ℎ +ℎ 𝑥 ) = 𝑥 ) ) |
| 18 | 17 | riota2 | ⊢ ( ( 0ℎ ∈ ℋ ∧ ∃! 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑦 +ℎ 𝑥 ) = 𝑥 ) → ( ∀ 𝑥 ∈ ℋ ( 0ℎ +ℎ 𝑥 ) = 𝑥 ↔ ( ℩ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑦 +ℎ 𝑥 ) = 𝑥 ) = 0ℎ ) ) |
| 19 | 12 14 18 | mp2an | ⊢ ( ∀ 𝑥 ∈ ℋ ( 0ℎ +ℎ 𝑥 ) = 𝑥 ↔ ( ℩ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑦 +ℎ 𝑥 ) = 𝑥 ) = 0ℎ ) |
| 20 | 11 19 | mpbi | ⊢ ( ℩ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑦 +ℎ 𝑥 ) = 𝑥 ) = 0ℎ |
| 21 | 9 20 | eqtri | ⊢ ( GId ‘ +ℎ ) = 0ℎ |