This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert space vector addition is an Abelian group operation. (Contributed by NM, 15-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hilablo | ⊢ +ℎ ∈ AbelOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex | ⊢ ℋ ∈ V | |
| 2 | ax-hfvadd | ⊢ +ℎ : ( ℋ × ℋ ) ⟶ ℋ | |
| 3 | ax-hvass | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 +ℎ 𝑦 ) +ℎ 𝑧 ) = ( 𝑥 +ℎ ( 𝑦 +ℎ 𝑧 ) ) ) | |
| 4 | ax-hv0cl | ⊢ 0ℎ ∈ ℋ | |
| 5 | hvaddlid | ⊢ ( 𝑥 ∈ ℋ → ( 0ℎ +ℎ 𝑥 ) = 𝑥 ) | |
| 6 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 7 | hvmulcl | ⊢ ( ( - 1 ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( - 1 ·ℎ 𝑥 ) ∈ ℋ ) | |
| 8 | 6 7 | mpan | ⊢ ( 𝑥 ∈ ℋ → ( - 1 ·ℎ 𝑥 ) ∈ ℋ ) |
| 9 | ax-hvcom | ⊢ ( ( ( - 1 ·ℎ 𝑥 ) ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( - 1 ·ℎ 𝑥 ) +ℎ 𝑥 ) = ( 𝑥 +ℎ ( - 1 ·ℎ 𝑥 ) ) ) | |
| 10 | 8 9 | mpancom | ⊢ ( 𝑥 ∈ ℋ → ( ( - 1 ·ℎ 𝑥 ) +ℎ 𝑥 ) = ( 𝑥 +ℎ ( - 1 ·ℎ 𝑥 ) ) ) |
| 11 | hvnegid | ⊢ ( 𝑥 ∈ ℋ → ( 𝑥 +ℎ ( - 1 ·ℎ 𝑥 ) ) = 0ℎ ) | |
| 12 | 10 11 | eqtrd | ⊢ ( 𝑥 ∈ ℋ → ( ( - 1 ·ℎ 𝑥 ) +ℎ 𝑥 ) = 0ℎ ) |
| 13 | 1 2 3 4 5 8 12 | isgrpoi | ⊢ +ℎ ∈ GrpOp |
| 14 | 2 | fdmi | ⊢ dom +ℎ = ( ℋ × ℋ ) |
| 15 | ax-hvcom | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 +ℎ 𝑦 ) = ( 𝑦 +ℎ 𝑥 ) ) | |
| 16 | 13 14 15 | isabloi | ⊢ +ℎ ∈ AbelOp |