This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group operation is associative. (Contributed by NM, 10-Oct-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | grpfo.1 | ⊢ 𝑋 = ran 𝐺 | |
| Assertion | grpoass | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) = ( 𝐴 𝐺 ( 𝐵 𝐺 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpfo.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | 1 | isgrpo | ⊢ ( 𝐺 ∈ GrpOp → ( 𝐺 ∈ GrpOp ↔ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) ) |
| 3 | 2 | ibi | ⊢ ( 𝐺 ∈ GrpOp → ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) |
| 4 | 3 | simp2d | ⊢ ( 𝐺 ∈ GrpOp → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) |
| 5 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐺 𝑦 ) = ( 𝐴 𝐺 𝑦 ) ) | |
| 6 | 5 | oveq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( ( 𝐴 𝐺 𝑦 ) 𝐺 𝑧 ) ) |
| 7 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) = ( 𝐴 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) | |
| 8 | 6 7 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ↔ ( ( 𝐴 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝐴 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) |
| 9 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝐺 𝑦 ) = ( 𝐴 𝐺 𝐵 ) ) | |
| 10 | 9 | oveq1d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 𝐺 𝑦 ) 𝐺 𝑧 ) = ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝑧 ) ) |
| 11 | oveq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 𝐺 𝑧 ) = ( 𝐵 𝐺 𝑧 ) ) | |
| 12 | 11 | oveq2d | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝐺 ( 𝑦 𝐺 𝑧 ) ) = ( 𝐴 𝐺 ( 𝐵 𝐺 𝑧 ) ) ) |
| 13 | 10 12 | eqeq12d | ⊢ ( 𝑦 = 𝐵 → ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝐴 𝐺 ( 𝑦 𝐺 𝑧 ) ) ↔ ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝑧 ) = ( 𝐴 𝐺 ( 𝐵 𝐺 𝑧 ) ) ) ) |
| 14 | oveq2 | ⊢ ( 𝑧 = 𝐶 → ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝑧 ) = ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) ) | |
| 15 | oveq2 | ⊢ ( 𝑧 = 𝐶 → ( 𝐵 𝐺 𝑧 ) = ( 𝐵 𝐺 𝐶 ) ) | |
| 16 | 15 | oveq2d | ⊢ ( 𝑧 = 𝐶 → ( 𝐴 𝐺 ( 𝐵 𝐺 𝑧 ) ) = ( 𝐴 𝐺 ( 𝐵 𝐺 𝐶 ) ) ) |
| 17 | 14 16 | eqeq12d | ⊢ ( 𝑧 = 𝐶 → ( ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝑧 ) = ( 𝐴 𝐺 ( 𝐵 𝐺 𝑧 ) ) ↔ ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) = ( 𝐴 𝐺 ( 𝐵 𝐺 𝐶 ) ) ) ) |
| 18 | 8 13 17 | rspc3v | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) = ( 𝐴 𝐺 ( 𝐵 𝐺 𝐶 ) ) ) ) |
| 19 | 4 18 | mpan9 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) = ( 𝐴 𝐺 ( 𝐵 𝐺 𝐶 ) ) ) |