This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function for the negative of a vector on a normed complex vector space, in terms of the underlying addition group inverse. (We currently do not have a separate notation for the negative of a vector.) (Contributed by NM, 27-Mar-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvinvfval.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| nvinvfval.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| nvinvfval.3 | ⊢ 𝑁 = ( 𝑆 ∘ ◡ ( 2nd ↾ ( { - 1 } × V ) ) ) | ||
| Assertion | nvinvfval | ⊢ ( 𝑈 ∈ NrmCVec → 𝑁 = ( inv ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvinvfval.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 2 | nvinvfval.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 3 | nvinvfval.3 | ⊢ 𝑁 = ( 𝑆 ∘ ◡ ( 2nd ↾ ( { - 1 } × V ) ) ) | |
| 4 | eqid | ⊢ ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 ) | |
| 5 | 4 2 | nvsf | ⊢ ( 𝑈 ∈ NrmCVec → 𝑆 : ( ℂ × ( BaseSet ‘ 𝑈 ) ) ⟶ ( BaseSet ‘ 𝑈 ) ) |
| 6 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 7 | 3 | curry1f | ⊢ ( ( 𝑆 : ( ℂ × ( BaseSet ‘ 𝑈 ) ) ⟶ ( BaseSet ‘ 𝑈 ) ∧ - 1 ∈ ℂ ) → 𝑁 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑈 ) ) |
| 8 | 5 6 7 | sylancl | ⊢ ( 𝑈 ∈ NrmCVec → 𝑁 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑈 ) ) |
| 9 | 8 | ffnd | ⊢ ( 𝑈 ∈ NrmCVec → 𝑁 Fn ( BaseSet ‘ 𝑈 ) ) |
| 10 | 1 | nvgrp | ⊢ ( 𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp ) |
| 11 | 4 1 | bafval | ⊢ ( BaseSet ‘ 𝑈 ) = ran 𝐺 |
| 12 | eqid | ⊢ ( inv ‘ 𝐺 ) = ( inv ‘ 𝐺 ) | |
| 13 | 11 12 | grpoinvf | ⊢ ( 𝐺 ∈ GrpOp → ( inv ‘ 𝐺 ) : ( BaseSet ‘ 𝑈 ) –1-1-onto→ ( BaseSet ‘ 𝑈 ) ) |
| 14 | f1ofn | ⊢ ( ( inv ‘ 𝐺 ) : ( BaseSet ‘ 𝑈 ) –1-1-onto→ ( BaseSet ‘ 𝑈 ) → ( inv ‘ 𝐺 ) Fn ( BaseSet ‘ 𝑈 ) ) | |
| 15 | 10 13 14 | 3syl | ⊢ ( 𝑈 ∈ NrmCVec → ( inv ‘ 𝐺 ) Fn ( BaseSet ‘ 𝑈 ) ) |
| 16 | 5 | ffnd | ⊢ ( 𝑈 ∈ NrmCVec → 𝑆 Fn ( ℂ × ( BaseSet ‘ 𝑈 ) ) ) |
| 17 | 16 | adantr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ) → 𝑆 Fn ( ℂ × ( BaseSet ‘ 𝑈 ) ) ) |
| 18 | 3 | curry1val | ⊢ ( ( 𝑆 Fn ( ℂ × ( BaseSet ‘ 𝑈 ) ) ∧ - 1 ∈ ℂ ) → ( 𝑁 ‘ 𝑥 ) = ( - 1 𝑆 𝑥 ) ) |
| 19 | 17 6 18 | sylancl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝑁 ‘ 𝑥 ) = ( - 1 𝑆 𝑥 ) ) |
| 20 | 4 1 2 12 | nvinv | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ) → ( - 1 𝑆 𝑥 ) = ( ( inv ‘ 𝐺 ) ‘ 𝑥 ) ) |
| 21 | 19 20 | eqtrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝑁 ‘ 𝑥 ) = ( ( inv ‘ 𝐺 ) ‘ 𝑥 ) ) |
| 22 | 9 15 21 | eqfnfvd | ⊢ ( 𝑈 ∈ NrmCVec → 𝑁 = ( inv ‘ 𝐺 ) ) |