This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of the set exponential of two finite sets is the exponential of their sizes. (This is the original motivation behind the notation for set exponentiation.) (Contributed by Mario Carneiro, 5-Aug-2014) (Proof shortened by AV, 18-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashmap | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 ↑m 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐴 ↑m 𝑥 ) = ( 𝐴 ↑m ∅ ) ) | |
| 2 | 1 | fveq2d | ⊢ ( 𝑥 = ∅ → ( ♯ ‘ ( 𝐴 ↑m 𝑥 ) ) = ( ♯ ‘ ( 𝐴 ↑m ∅ ) ) ) |
| 3 | fveq2 | ⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ∅ ) ) | |
| 4 | 3 | oveq2d | ⊢ ( 𝑥 = ∅ → ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ∅ ) ) ) |
| 5 | 2 4 | eqeq12d | ⊢ ( 𝑥 = ∅ → ( ( ♯ ‘ ( 𝐴 ↑m 𝑥 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) ) ↔ ( ♯ ‘ ( 𝐴 ↑m ∅ ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ∅ ) ) ) ) |
| 6 | 5 | imbi2d | ⊢ ( 𝑥 = ∅ → ( ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 ↑m 𝑥 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) ) ) ↔ ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 ↑m ∅ ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ∅ ) ) ) ) ) |
| 7 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑m 𝑥 ) = ( 𝐴 ↑m 𝑦 ) ) | |
| 8 | 7 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( ♯ ‘ ( 𝐴 ↑m 𝑥 ) ) = ( ♯ ‘ ( 𝐴 ↑m 𝑦 ) ) ) |
| 9 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) | |
| 10 | 9 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑦 ) ) ) |
| 11 | 8 10 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( ♯ ‘ ( 𝐴 ↑m 𝑥 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) ) ↔ ( ♯ ‘ ( 𝐴 ↑m 𝑦 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑦 ) ) ) ) |
| 12 | 11 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 ↑m 𝑥 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) ) ) ↔ ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 ↑m 𝑦 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑦 ) ) ) ) ) |
| 13 | oveq2 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝐴 ↑m 𝑥 ) = ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) | |
| 14 | 13 | fveq2d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ♯ ‘ ( 𝐴 ↑m 𝑥 ) ) = ( ♯ ‘ ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 15 | fveq2 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) | |
| 16 | 15 | oveq2d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 17 | 14 16 | eqeq12d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ♯ ‘ ( 𝐴 ↑m 𝑥 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) ) ↔ ( ♯ ‘ ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) |
| 18 | 17 | imbi2d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 ↑m 𝑥 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) ) ) ↔ ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) |
| 19 | oveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 ↑m 𝑥 ) = ( 𝐴 ↑m 𝐵 ) ) | |
| 20 | 19 | fveq2d | ⊢ ( 𝑥 = 𝐵 → ( ♯ ‘ ( 𝐴 ↑m 𝑥 ) ) = ( ♯ ‘ ( 𝐴 ↑m 𝐵 ) ) ) |
| 21 | fveq2 | ⊢ ( 𝑥 = 𝐵 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) ) | |
| 22 | 21 | oveq2d | ⊢ ( 𝑥 = 𝐵 → ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝐵 ) ) ) |
| 23 | 20 22 | eqeq12d | ⊢ ( 𝑥 = 𝐵 → ( ( ♯ ‘ ( 𝐴 ↑m 𝑥 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) ) ↔ ( ♯ ‘ ( 𝐴 ↑m 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝐵 ) ) ) ) |
| 24 | 23 | imbi2d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 ↑m 𝑥 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) ) ) ↔ ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 ↑m 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝐵 ) ) ) ) ) |
| 25 | hashcl | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) | |
| 26 | 25 | nn0cnd | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
| 27 | 26 | exp0d | ⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) ↑ 0 ) = 1 ) |
| 28 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 29 | 28 | oveq2i | ⊢ ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ∅ ) ) = ( ( ♯ ‘ 𝐴 ) ↑ 0 ) |
| 30 | 29 | a1i | ⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ∅ ) ) = ( ( ♯ ‘ 𝐴 ) ↑ 0 ) ) |
| 31 | mapdm0 | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ↑m ∅ ) = { ∅ } ) | |
| 32 | 31 | fveq2d | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 ↑m ∅ ) ) = ( ♯ ‘ { ∅ } ) ) |
| 33 | 0ex | ⊢ ∅ ∈ V | |
| 34 | hashsng | ⊢ ( ∅ ∈ V → ( ♯ ‘ { ∅ } ) = 1 ) | |
| 35 | 33 34 | mp1i | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ { ∅ } ) = 1 ) |
| 36 | 32 35 | eqtrd | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 ↑m ∅ ) ) = 1 ) |
| 37 | 27 30 36 | 3eqtr4rd | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 ↑m ∅ ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ∅ ) ) ) |
| 38 | oveq1 | ⊢ ( ( ♯ ‘ ( 𝐴 ↑m 𝑦 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑦 ) ) → ( ( ♯ ‘ ( 𝐴 ↑m 𝑦 ) ) · ( ♯ ‘ 𝐴 ) ) = ( ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑦 ) ) · ( ♯ ‘ 𝐴 ) ) ) | |
| 39 | vex | ⊢ 𝑦 ∈ V | |
| 40 | 39 | a1i | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝑦 ∈ V ) |
| 41 | vsnex | ⊢ { 𝑧 } ∈ V | |
| 42 | 41 | a1i | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → { 𝑧 } ∈ V ) |
| 43 | elex | ⊢ ( 𝐴 ∈ Fin → 𝐴 ∈ V ) | |
| 44 | 43 | adantr | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝐴 ∈ V ) |
| 45 | simprr | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ¬ 𝑧 ∈ 𝑦 ) | |
| 46 | disjsn | ⊢ ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝑦 ) | |
| 47 | 45 46 | sylibr | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝑦 ∩ { 𝑧 } ) = ∅ ) |
| 48 | mapunen | ⊢ ( ( ( 𝑦 ∈ V ∧ { 𝑧 } ∈ V ∧ 𝐴 ∈ V ) ∧ ( 𝑦 ∩ { 𝑧 } ) = ∅ ) → ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ≈ ( ( 𝐴 ↑m 𝑦 ) × ( 𝐴 ↑m { 𝑧 } ) ) ) | |
| 49 | 40 42 44 47 48 | syl31anc | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ≈ ( ( 𝐴 ↑m 𝑦 ) × ( 𝐴 ↑m { 𝑧 } ) ) ) |
| 50 | simpl | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝐴 ∈ Fin ) | |
| 51 | simprl | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝑦 ∈ Fin ) | |
| 52 | snfi | ⊢ { 𝑧 } ∈ Fin | |
| 53 | unfi | ⊢ ( ( 𝑦 ∈ Fin ∧ { 𝑧 } ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) | |
| 54 | 51 52 53 | sylancl | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 55 | mapfi | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) → ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) | |
| 56 | 50 54 55 | syl2anc | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) |
| 57 | mapfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑦 ∈ Fin ) → ( 𝐴 ↑m 𝑦 ) ∈ Fin ) | |
| 58 | 57 | adantrr | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐴 ↑m 𝑦 ) ∈ Fin ) |
| 59 | mapfi | ⊢ ( ( 𝐴 ∈ Fin ∧ { 𝑧 } ∈ Fin ) → ( 𝐴 ↑m { 𝑧 } ) ∈ Fin ) | |
| 60 | 50 52 59 | sylancl | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐴 ↑m { 𝑧 } ) ∈ Fin ) |
| 61 | xpfi | ⊢ ( ( ( 𝐴 ↑m 𝑦 ) ∈ Fin ∧ ( 𝐴 ↑m { 𝑧 } ) ∈ Fin ) → ( ( 𝐴 ↑m 𝑦 ) × ( 𝐴 ↑m { 𝑧 } ) ) ∈ Fin ) | |
| 62 | 58 60 61 | syl2anc | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( 𝐴 ↑m 𝑦 ) × ( 𝐴 ↑m { 𝑧 } ) ) ∈ Fin ) |
| 63 | hashen | ⊢ ( ( ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ∧ ( ( 𝐴 ↑m 𝑦 ) × ( 𝐴 ↑m { 𝑧 } ) ) ∈ Fin ) → ( ( ♯ ‘ ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ♯ ‘ ( ( 𝐴 ↑m 𝑦 ) × ( 𝐴 ↑m { 𝑧 } ) ) ) ↔ ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ≈ ( ( 𝐴 ↑m 𝑦 ) × ( 𝐴 ↑m { 𝑧 } ) ) ) ) | |
| 64 | 56 62 63 | syl2anc | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ♯ ‘ ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ♯ ‘ ( ( 𝐴 ↑m 𝑦 ) × ( 𝐴 ↑m { 𝑧 } ) ) ) ↔ ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ≈ ( ( 𝐴 ↑m 𝑦 ) × ( 𝐴 ↑m { 𝑧 } ) ) ) ) |
| 65 | 49 64 | mpbird | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ♯ ‘ ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ♯ ‘ ( ( 𝐴 ↑m 𝑦 ) × ( 𝐴 ↑m { 𝑧 } ) ) ) ) |
| 66 | hashxp | ⊢ ( ( ( 𝐴 ↑m 𝑦 ) ∈ Fin ∧ ( 𝐴 ↑m { 𝑧 } ) ∈ Fin ) → ( ♯ ‘ ( ( 𝐴 ↑m 𝑦 ) × ( 𝐴 ↑m { 𝑧 } ) ) ) = ( ( ♯ ‘ ( 𝐴 ↑m 𝑦 ) ) · ( ♯ ‘ ( 𝐴 ↑m { 𝑧 } ) ) ) ) | |
| 67 | 58 60 66 | syl2anc | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ♯ ‘ ( ( 𝐴 ↑m 𝑦 ) × ( 𝐴 ↑m { 𝑧 } ) ) ) = ( ( ♯ ‘ ( 𝐴 ↑m 𝑦 ) ) · ( ♯ ‘ ( 𝐴 ↑m { 𝑧 } ) ) ) ) |
| 68 | vex | ⊢ 𝑧 ∈ V | |
| 69 | 68 | a1i | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝑧 ∈ V ) |
| 70 | 50 69 | mapsnend | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐴 ↑m { 𝑧 } ) ≈ 𝐴 ) |
| 71 | hashen | ⊢ ( ( ( 𝐴 ↑m { 𝑧 } ) ∈ Fin ∧ 𝐴 ∈ Fin ) → ( ( ♯ ‘ ( 𝐴 ↑m { 𝑧 } ) ) = ( ♯ ‘ 𝐴 ) ↔ ( 𝐴 ↑m { 𝑧 } ) ≈ 𝐴 ) ) | |
| 72 | 60 50 71 | syl2anc | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ♯ ‘ ( 𝐴 ↑m { 𝑧 } ) ) = ( ♯ ‘ 𝐴 ) ↔ ( 𝐴 ↑m { 𝑧 } ) ≈ 𝐴 ) ) |
| 73 | 70 72 | mpbird | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ♯ ‘ ( 𝐴 ↑m { 𝑧 } ) ) = ( ♯ ‘ 𝐴 ) ) |
| 74 | 73 | oveq2d | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ♯ ‘ ( 𝐴 ↑m 𝑦 ) ) · ( ♯ ‘ ( 𝐴 ↑m { 𝑧 } ) ) ) = ( ( ♯ ‘ ( 𝐴 ↑m 𝑦 ) ) · ( ♯ ‘ 𝐴 ) ) ) |
| 75 | 65 67 74 | 3eqtrd | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ♯ ‘ ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( ♯ ‘ ( 𝐴 ↑m 𝑦 ) ) · ( ♯ ‘ 𝐴 ) ) ) |
| 76 | hashunsng | ⊢ ( 𝑧 ∈ V → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) | |
| 77 | 76 | elv | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) |
| 78 | 77 | adantl | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) |
| 79 | 78 | oveq2d | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 80 | 26 | adantr | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
| 81 | hashcl | ⊢ ( 𝑦 ∈ Fin → ( ♯ ‘ 𝑦 ) ∈ ℕ0 ) | |
| 82 | 81 | ad2antrl | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ♯ ‘ 𝑦 ) ∈ ℕ0 ) |
| 83 | 80 82 | expp1d | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ♯ ‘ 𝐴 ) ↑ ( ( ♯ ‘ 𝑦 ) + 1 ) ) = ( ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑦 ) ) · ( ♯ ‘ 𝐴 ) ) ) |
| 84 | 79 83 | eqtrd | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑦 ) ) · ( ♯ ‘ 𝐴 ) ) ) |
| 85 | 75 84 | eqeq12d | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ♯ ‘ ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ↔ ( ( ♯ ‘ ( 𝐴 ↑m 𝑦 ) ) · ( ♯ ‘ 𝐴 ) ) = ( ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑦 ) ) · ( ♯ ‘ 𝐴 ) ) ) ) |
| 86 | 38 85 | imbitrrid | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ♯ ‘ ( 𝐴 ↑m 𝑦 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑦 ) ) → ( ♯ ‘ ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) |
| 87 | 86 | expcom | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( 𝐴 ∈ Fin → ( ( ♯ ‘ ( 𝐴 ↑m 𝑦 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑦 ) ) → ( ♯ ‘ ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) |
| 88 | 87 | a2d | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 ↑m 𝑦 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑦 ) ) ) → ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) |
| 89 | 6 12 18 24 37 88 | findcard2s | ⊢ ( 𝐵 ∈ Fin → ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 ↑m 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝐵 ) ) ) ) |
| 90 | 89 | impcom | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 ↑m 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝐵 ) ) ) |