This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the range of a 1-1 onto function is a set, the function itself is a set. (Contributed by AV, 2-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1oexrnex | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐹 ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 2 | f1ocnv | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) | |
| 3 | f1of | ⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐵 ⟶ 𝐴 ) | |
| 4 | 1 2 3 | 3syl | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → ◡ 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 5 | fex | ⊢ ( ( ◡ 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐵 ∈ 𝑉 ) → ◡ 𝐹 ∈ V ) | |
| 6 | 4 5 | sylancom | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → ◡ 𝐹 ∈ V ) |
| 7 | f1orel | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → Rel 𝐹 ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → Rel 𝐹 ) |
| 9 | relcnvexb | ⊢ ( Rel 𝐹 → ( 𝐹 ∈ V ↔ ◡ 𝐹 ∈ V ) ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐹 ∈ V ↔ ◡ 𝐹 ∈ V ) ) |
| 11 | 6 10 | mpbird | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐹 ∈ V ) |