This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017) (Proof shortened by Wolf Lammen, 13-Apr-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3imp3i2an.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) | |
| 3imp3i2an.2 | ⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜏 ) | ||
| 3imp3i2an.3 | ⊢ ( ( 𝜃 ∧ 𝜏 ) → 𝜂 ) | ||
| Assertion | 3imp3i2an | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imp3i2an.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) | |
| 2 | 3imp3i2an.2 | ⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜏 ) | |
| 3 | 3imp3i2an.3 | ⊢ ( ( 𝜃 ∧ 𝜏 ) → 𝜂 ) | |
| 4 | 2 | 3adant2 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜏 ) |
| 5 | 1 4 3 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜂 ) |