This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two-dimensional commutation of a group sum. Note that while A and D are constants w.r.t. j , k , C ( j ) and E ( k ) are not. (Contributed by Mario Carneiro, 28-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsum2d2.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsum2d2.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsum2d2.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsum2d2.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsum2d2.r | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐶 ∈ 𝑊 ) | ||
| gsum2d2.f | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) → 𝑋 ∈ 𝐵 ) | ||
| gsum2d2.u | ⊢ ( 𝜑 → 𝑈 ∈ Fin ) | ||
| gsum2d2.n | ⊢ ( ( 𝜑 ∧ ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ∧ ¬ 𝑗 𝑈 𝑘 ) ) → 𝑋 = 0 ) | ||
| gsumcom2.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑌 ) | ||
| gsumcom2.c | ⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ↔ ( 𝑘 ∈ 𝐷 ∧ 𝑗 ∈ 𝐸 ) ) ) | ||
| Assertion | gsumcom2 | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐷 , 𝑗 ∈ 𝐸 ↦ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsum2d2.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsum2d2.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsum2d2.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | gsum2d2.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 5 | gsum2d2.r | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐶 ∈ 𝑊 ) | |
| 6 | gsum2d2.f | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) → 𝑋 ∈ 𝐵 ) | |
| 7 | gsum2d2.u | ⊢ ( 𝜑 → 𝑈 ∈ Fin ) | |
| 8 | gsum2d2.n | ⊢ ( ( 𝜑 ∧ ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ∧ ¬ 𝑗 𝑈 𝑘 ) ) → 𝑋 = 0 ) | |
| 9 | gsumcom2.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑌 ) | |
| 10 | gsumcom2.c | ⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ↔ ( 𝑘 ∈ 𝐷 ∧ 𝑗 ∈ 𝐸 ) ) ) | |
| 11 | vsnex | ⊢ { 𝑗 } ∈ V | |
| 12 | xpexg | ⊢ ( ( { 𝑗 } ∈ V ∧ 𝐶 ∈ 𝑊 ) → ( { 𝑗 } × 𝐶 ) ∈ V ) | |
| 13 | 11 5 12 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( { 𝑗 } × 𝐶 ) ∈ V ) |
| 14 | 13 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∈ V ) |
| 15 | iunexg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∈ V ) → ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∈ V ) | |
| 16 | 4 14 15 | syl2anc | ⊢ ( 𝜑 → ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∈ V ) |
| 17 | 6 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐶 𝑋 ∈ 𝐵 ) |
| 18 | eqid | ⊢ ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) = ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) | |
| 19 | 18 | fmpox | ⊢ ( ∀ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐶 𝑋 ∈ 𝐵 ↔ ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) : ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ⟶ 𝐵 ) |
| 20 | 17 19 | sylib | ⊢ ( 𝜑 → ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) : ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ⟶ 𝐵 ) |
| 21 | 1 2 3 4 5 6 7 8 | gsum2d2lem | ⊢ ( 𝜑 → ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) finSupp 0 ) |
| 22 | relxp | ⊢ Rel ( { 𝑘 } × 𝐸 ) | |
| 23 | 22 | rgenw | ⊢ ∀ 𝑘 ∈ 𝐷 Rel ( { 𝑘 } × 𝐸 ) |
| 24 | reliun | ⊢ ( Rel ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ↔ ∀ 𝑘 ∈ 𝐷 Rel ( { 𝑘 } × 𝐸 ) ) | |
| 25 | 23 24 | mpbir | ⊢ Rel ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) |
| 26 | cnvf1o | ⊢ ( Rel ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) → ( 𝑧 ∈ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ↦ ∪ ◡ { 𝑧 } ) : ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) –1-1-onto→ ◡ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ) | |
| 27 | 25 26 | ax-mp | ⊢ ( 𝑧 ∈ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ↦ ∪ ◡ { 𝑧 } ) : ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) –1-1-onto→ ◡ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) |
| 28 | relxp | ⊢ Rel ( { 𝑗 } × 𝐶 ) | |
| 29 | 28 | rgenw | ⊢ ∀ 𝑗 ∈ 𝐴 Rel ( { 𝑗 } × 𝐶 ) |
| 30 | reliun | ⊢ ( Rel ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ↔ ∀ 𝑗 ∈ 𝐴 Rel ( { 𝑗 } × 𝐶 ) ) | |
| 31 | 29 30 | mpbir | ⊢ Rel ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) |
| 32 | relcnv | ⊢ Rel ◡ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) | |
| 33 | nfv | ⊢ Ⅎ 𝑘 𝜑 | |
| 34 | nfv | ⊢ Ⅎ 𝑘 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) | |
| 35 | nfiu1 | ⊢ Ⅎ 𝑘 ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) | |
| 36 | 35 | nfcnv | ⊢ Ⅎ 𝑘 ◡ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) |
| 37 | 36 | nfel2 | ⊢ Ⅎ 𝑘 〈 𝑥 , 𝑦 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) |
| 38 | 34 37 | nfbi | ⊢ Ⅎ 𝑘 ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ) |
| 39 | 33 38 | nfim | ⊢ Ⅎ 𝑘 ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ) ) |
| 40 | opeq2 | ⊢ ( 𝑘 = 𝑦 → 〈 𝑥 , 𝑘 〉 = 〈 𝑥 , 𝑦 〉 ) | |
| 41 | 40 | eleq1d | ⊢ ( 𝑘 = 𝑦 → ( 〈 𝑥 , 𝑘 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ) ) |
| 42 | 40 | eleq1d | ⊢ ( 𝑘 = 𝑦 → ( 〈 𝑥 , 𝑘 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ) ) |
| 43 | 41 42 | bibi12d | ⊢ ( 𝑘 = 𝑦 → ( ( 〈 𝑥 , 𝑘 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ↔ 〈 𝑥 , 𝑘 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ) ) ) |
| 44 | 43 | imbi2d | ⊢ ( 𝑘 = 𝑦 → ( ( 𝜑 → ( 〈 𝑥 , 𝑘 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ↔ 〈 𝑥 , 𝑘 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ) ) ↔ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ) ) ) ) |
| 45 | nfv | ⊢ Ⅎ 𝑗 𝜑 | |
| 46 | nfiu1 | ⊢ Ⅎ 𝑗 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) | |
| 47 | 46 | nfel2 | ⊢ Ⅎ 𝑗 〈 𝑥 , 𝑘 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) |
| 48 | nfv | ⊢ Ⅎ 𝑗 〈 𝑥 , 𝑘 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) | |
| 49 | 47 48 | nfbi | ⊢ Ⅎ 𝑗 ( 〈 𝑥 , 𝑘 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ↔ 〈 𝑥 , 𝑘 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ) |
| 50 | 45 49 | nfim | ⊢ Ⅎ 𝑗 ( 𝜑 → ( 〈 𝑥 , 𝑘 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ↔ 〈 𝑥 , 𝑘 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ) ) |
| 51 | opeq1 | ⊢ ( 𝑗 = 𝑥 → 〈 𝑗 , 𝑘 〉 = 〈 𝑥 , 𝑘 〉 ) | |
| 52 | 51 | eleq1d | ⊢ ( 𝑗 = 𝑥 → ( 〈 𝑗 , 𝑘 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ↔ 〈 𝑥 , 𝑘 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ) ) |
| 53 | 51 | eleq1d | ⊢ ( 𝑗 = 𝑥 → ( 〈 𝑗 , 𝑘 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ↔ 〈 𝑥 , 𝑘 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ) ) |
| 54 | 52 53 | bibi12d | ⊢ ( 𝑗 = 𝑥 → ( ( 〈 𝑗 , 𝑘 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ↔ 〈 𝑗 , 𝑘 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ) ↔ ( 〈 𝑥 , 𝑘 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ↔ 〈 𝑥 , 𝑘 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ) ) ) |
| 55 | 54 | imbi2d | ⊢ ( 𝑗 = 𝑥 → ( ( 𝜑 → ( 〈 𝑗 , 𝑘 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ↔ 〈 𝑗 , 𝑘 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ) ) ↔ ( 𝜑 → ( 〈 𝑥 , 𝑘 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ↔ 〈 𝑥 , 𝑘 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ) ) ) ) |
| 56 | opeliunxp | ⊢ ( 〈 𝑗 , 𝑘 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ↔ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) | |
| 57 | opeliunxp | ⊢ ( 〈 𝑘 , 𝑗 〉 ∈ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ↔ ( 𝑘 ∈ 𝐷 ∧ 𝑗 ∈ 𝐸 ) ) | |
| 58 | 10 56 57 | 3bitr4g | ⊢ ( 𝜑 → ( 〈 𝑗 , 𝑘 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ↔ 〈 𝑘 , 𝑗 〉 ∈ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ) ) |
| 59 | vex | ⊢ 𝑗 ∈ V | |
| 60 | vex | ⊢ 𝑘 ∈ V | |
| 61 | 59 60 | opelcnv | ⊢ ( 〈 𝑗 , 𝑘 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ↔ 〈 𝑘 , 𝑗 〉 ∈ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ) |
| 62 | 58 61 | bitr4di | ⊢ ( 𝜑 → ( 〈 𝑗 , 𝑘 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ↔ 〈 𝑗 , 𝑘 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ) ) |
| 63 | 50 55 62 | chvarfv | ⊢ ( 𝜑 → ( 〈 𝑥 , 𝑘 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ↔ 〈 𝑥 , 𝑘 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ) ) |
| 64 | 39 44 63 | chvarfv | ⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ) ) |
| 65 | 31 32 64 | eqrelrdv | ⊢ ( 𝜑 → ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) = ◡ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ) |
| 66 | 65 | f1oeq3d | ⊢ ( 𝜑 → ( ( 𝑧 ∈ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ↦ ∪ ◡ { 𝑧 } ) : ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) –1-1-onto→ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ↔ ( 𝑧 ∈ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ↦ ∪ ◡ { 𝑧 } ) : ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) –1-1-onto→ ◡ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ) ) |
| 67 | 27 66 | mpbiri | ⊢ ( 𝜑 → ( 𝑧 ∈ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ↦ ∪ ◡ { 𝑧 } ) : ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) –1-1-onto→ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ) |
| 68 | 1 2 3 16 20 21 67 | gsumf1o | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ) = ( 𝐺 Σg ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ∘ ( 𝑧 ∈ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ↦ ∪ ◡ { 𝑧 } ) ) ) ) |
| 69 | sneq | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → { 𝑧 } = { 〈 𝑥 , 𝑦 〉 } ) | |
| 70 | 69 | cnveqd | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ◡ { 𝑧 } = ◡ { 〈 𝑥 , 𝑦 〉 } ) |
| 71 | 70 | unieqd | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ∪ ◡ { 𝑧 } = ∪ ◡ { 〈 𝑥 , 𝑦 〉 } ) |
| 72 | opswap | ⊢ ∪ ◡ { 〈 𝑥 , 𝑦 〉 } = 〈 𝑦 , 𝑥 〉 | |
| 73 | 71 72 | eqtrdi | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ∪ ◡ { 𝑧 } = 〈 𝑦 , 𝑥 〉 ) |
| 74 | 73 | fveq2d | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ‘ ∪ ◡ { 𝑧 } ) = ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ‘ 〈 𝑦 , 𝑥 〉 ) ) |
| 75 | df-ov | ⊢ ( 𝑦 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑥 ) = ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ‘ 〈 𝑦 , 𝑥 〉 ) | |
| 76 | 74 75 | eqtr4di | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ‘ ∪ ◡ { 𝑧 } ) = ( 𝑦 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑥 ) ) |
| 77 | 76 | mpomptx | ⊢ ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐷 ( { 𝑥 } × ⦋ 𝑥 / 𝑘 ⦌ 𝐸 ) ↦ ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ‘ ∪ ◡ { 𝑧 } ) ) = ( 𝑥 ∈ 𝐷 , 𝑦 ∈ ⦋ 𝑥 / 𝑘 ⦌ 𝐸 ↦ ( 𝑦 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑥 ) ) |
| 78 | nfcv | ⊢ Ⅎ 𝑥 ( { 𝑘 } × 𝐸 ) | |
| 79 | nfcv | ⊢ Ⅎ 𝑘 { 𝑥 } | |
| 80 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑥 / 𝑘 ⦌ 𝐸 | |
| 81 | 79 80 | nfxp | ⊢ Ⅎ 𝑘 ( { 𝑥 } × ⦋ 𝑥 / 𝑘 ⦌ 𝐸 ) |
| 82 | sneq | ⊢ ( 𝑘 = 𝑥 → { 𝑘 } = { 𝑥 } ) | |
| 83 | csbeq1a | ⊢ ( 𝑘 = 𝑥 → 𝐸 = ⦋ 𝑥 / 𝑘 ⦌ 𝐸 ) | |
| 84 | 82 83 | xpeq12d | ⊢ ( 𝑘 = 𝑥 → ( { 𝑘 } × 𝐸 ) = ( { 𝑥 } × ⦋ 𝑥 / 𝑘 ⦌ 𝐸 ) ) |
| 85 | 78 81 84 | cbviun | ⊢ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) = ∪ 𝑥 ∈ 𝐷 ( { 𝑥 } × ⦋ 𝑥 / 𝑘 ⦌ 𝐸 ) |
| 86 | 85 | mpteq1i | ⊢ ( 𝑧 ∈ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ↦ ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ‘ ∪ ◡ { 𝑧 } ) ) = ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐷 ( { 𝑥 } × ⦋ 𝑥 / 𝑘 ⦌ 𝐸 ) ↦ ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ‘ ∪ ◡ { 𝑧 } ) ) |
| 87 | nfcv | ⊢ Ⅎ 𝑥 𝐸 | |
| 88 | nfcv | ⊢ Ⅎ 𝑥 ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑘 ) | |
| 89 | nfcv | ⊢ Ⅎ 𝑦 ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑘 ) | |
| 90 | nfcv | ⊢ Ⅎ 𝑘 𝑦 | |
| 91 | nfmpo2 | ⊢ Ⅎ 𝑘 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) | |
| 92 | nfcv | ⊢ Ⅎ 𝑘 𝑥 | |
| 93 | 90 91 92 | nfov | ⊢ Ⅎ 𝑘 ( 𝑦 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑥 ) |
| 94 | nfcv | ⊢ Ⅎ 𝑗 𝑦 | |
| 95 | nfmpo1 | ⊢ Ⅎ 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) | |
| 96 | nfcv | ⊢ Ⅎ 𝑗 𝑥 | |
| 97 | 94 95 96 | nfov | ⊢ Ⅎ 𝑗 ( 𝑦 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑥 ) |
| 98 | oveq2 | ⊢ ( 𝑘 = 𝑥 → ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑘 ) = ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑥 ) ) | |
| 99 | oveq1 | ⊢ ( 𝑗 = 𝑦 → ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑥 ) = ( 𝑦 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑥 ) ) | |
| 100 | 98 99 | sylan9eq | ⊢ ( ( 𝑘 = 𝑥 ∧ 𝑗 = 𝑦 ) → ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑘 ) = ( 𝑦 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑥 ) ) |
| 101 | 87 80 88 89 93 97 83 100 | cbvmpox | ⊢ ( 𝑘 ∈ 𝐷 , 𝑗 ∈ 𝐸 ↦ ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑘 ) ) = ( 𝑥 ∈ 𝐷 , 𝑦 ∈ ⦋ 𝑥 / 𝑘 ⦌ 𝐸 ↦ ( 𝑦 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑥 ) ) |
| 102 | 77 86 101 | 3eqtr4i | ⊢ ( 𝑧 ∈ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ↦ ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ‘ ∪ ◡ { 𝑧 } ) ) = ( 𝑘 ∈ 𝐷 , 𝑗 ∈ 𝐸 ↦ ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑘 ) ) |
| 103 | f1of | ⊢ ( ( 𝑧 ∈ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ↦ ∪ ◡ { 𝑧 } ) : ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) –1-1-onto→ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) → ( 𝑧 ∈ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ↦ ∪ ◡ { 𝑧 } ) : ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ⟶ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ) | |
| 104 | 67 103 | syl | ⊢ ( 𝜑 → ( 𝑧 ∈ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ↦ ∪ ◡ { 𝑧 } ) : ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ⟶ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ) |
| 105 | eqid | ⊢ ( 𝑧 ∈ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ↦ ∪ ◡ { 𝑧 } ) = ( 𝑧 ∈ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ↦ ∪ ◡ { 𝑧 } ) | |
| 106 | 105 | fmpt | ⊢ ( ∀ 𝑧 ∈ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ∪ ◡ { 𝑧 } ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ↔ ( 𝑧 ∈ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ↦ ∪ ◡ { 𝑧 } ) : ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ⟶ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ) |
| 107 | 104 106 | sylibr | ⊢ ( 𝜑 → ∀ 𝑧 ∈ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ∪ ◡ { 𝑧 } ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ) |
| 108 | eqidd | ⊢ ( 𝜑 → ( 𝑧 ∈ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ↦ ∪ ◡ { 𝑧 } ) = ( 𝑧 ∈ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ↦ ∪ ◡ { 𝑧 } ) ) | |
| 109 | 20 | feqmptd | ⊢ ( 𝜑 → ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) = ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ↦ ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ‘ 𝑥 ) ) ) |
| 110 | fveq2 | ⊢ ( 𝑥 = ∪ ◡ { 𝑧 } → ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ‘ 𝑥 ) = ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ‘ ∪ ◡ { 𝑧 } ) ) | |
| 111 | 107 108 109 110 | fmptcof | ⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ∘ ( 𝑧 ∈ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ↦ ∪ ◡ { 𝑧 } ) ) = ( 𝑧 ∈ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ↦ ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ‘ ∪ ◡ { 𝑧 } ) ) ) |
| 112 | 6 | ex | ⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) → 𝑋 ∈ 𝐵 ) ) |
| 113 | 18 | ovmpt4g | ⊢ ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑘 ) = 𝑋 ) |
| 114 | 113 | 3expia | ⊢ ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) → ( 𝑋 ∈ 𝐵 → ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑘 ) = 𝑋 ) ) |
| 115 | 112 114 | sylcom | ⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) → ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑘 ) = 𝑋 ) ) |
| 116 | 10 115 | sylbird | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐷 ∧ 𝑗 ∈ 𝐸 ) → ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑘 ) = 𝑋 ) ) |
| 117 | 116 | 3impib | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ∧ 𝑗 ∈ 𝐸 ) → ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑘 ) = 𝑋 ) |
| 118 | 117 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ∧ 𝑗 ∈ 𝐸 ) → 𝑋 = ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑘 ) ) |
| 119 | 118 | mpoeq3dva | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐷 , 𝑗 ∈ 𝐸 ↦ 𝑋 ) = ( 𝑘 ∈ 𝐷 , 𝑗 ∈ 𝐸 ↦ ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑘 ) ) ) |
| 120 | 102 111 119 | 3eqtr4a | ⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ∘ ( 𝑧 ∈ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ↦ ∪ ◡ { 𝑧 } ) ) = ( 𝑘 ∈ 𝐷 , 𝑗 ∈ 𝐸 ↦ 𝑋 ) ) |
| 121 | 120 | oveq2d | ⊢ ( 𝜑 → ( 𝐺 Σg ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ∘ ( 𝑧 ∈ ∪ 𝑘 ∈ 𝐷 ( { 𝑘 } × 𝐸 ) ↦ ∪ ◡ { 𝑧 } ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐷 , 𝑗 ∈ 𝐸 ↦ 𝑋 ) ) ) |
| 122 | 68 121 | eqtrd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐷 , 𝑗 ∈ 𝐸 ↦ 𝑋 ) ) ) |