This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvf1o | ⊢ ( Rel 𝐴 → ( 𝑥 ∈ 𝐴 ↦ ∪ ◡ { 𝑥 } ) : 𝐴 –1-1-onto→ ◡ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ ∪ ◡ { 𝑥 } ) = ( 𝑥 ∈ 𝐴 ↦ ∪ ◡ { 𝑥 } ) | |
| 2 | vsnex | ⊢ { 𝑥 } ∈ V | |
| 3 | 2 | cnvex | ⊢ ◡ { 𝑥 } ∈ V |
| 4 | 3 | uniex | ⊢ ∪ ◡ { 𝑥 } ∈ V |
| 5 | 4 | a1i | ⊢ ( ( Rel 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∪ ◡ { 𝑥 } ∈ V ) |
| 6 | vsnex | ⊢ { 𝑦 } ∈ V | |
| 7 | 6 | cnvex | ⊢ ◡ { 𝑦 } ∈ V |
| 8 | 7 | uniex | ⊢ ∪ ◡ { 𝑦 } ∈ V |
| 9 | 8 | a1i | ⊢ ( ( Rel 𝐴 ∧ 𝑦 ∈ ◡ 𝐴 ) → ∪ ◡ { 𝑦 } ∈ V ) |
| 10 | cnvf1olem | ⊢ ( ( Rel 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡ { 𝑥 } ) ) → ( 𝑦 ∈ ◡ 𝐴 ∧ 𝑥 = ∪ ◡ { 𝑦 } ) ) | |
| 11 | relcnv | ⊢ Rel ◡ 𝐴 | |
| 12 | simpr | ⊢ ( ( Rel 𝐴 ∧ ( 𝑦 ∈ ◡ 𝐴 ∧ 𝑥 = ∪ ◡ { 𝑦 } ) ) → ( 𝑦 ∈ ◡ 𝐴 ∧ 𝑥 = ∪ ◡ { 𝑦 } ) ) | |
| 13 | cnvf1olem | ⊢ ( ( Rel ◡ 𝐴 ∧ ( 𝑦 ∈ ◡ 𝐴 ∧ 𝑥 = ∪ ◡ { 𝑦 } ) ) → ( 𝑥 ∈ ◡ ◡ 𝐴 ∧ 𝑦 = ∪ ◡ { 𝑥 } ) ) | |
| 14 | 11 12 13 | sylancr | ⊢ ( ( Rel 𝐴 ∧ ( 𝑦 ∈ ◡ 𝐴 ∧ 𝑥 = ∪ ◡ { 𝑦 } ) ) → ( 𝑥 ∈ ◡ ◡ 𝐴 ∧ 𝑦 = ∪ ◡ { 𝑥 } ) ) |
| 15 | dfrel2 | ⊢ ( Rel 𝐴 ↔ ◡ ◡ 𝐴 = 𝐴 ) | |
| 16 | eleq2 | ⊢ ( ◡ ◡ 𝐴 = 𝐴 → ( 𝑥 ∈ ◡ ◡ 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) | |
| 17 | 15 16 | sylbi | ⊢ ( Rel 𝐴 → ( 𝑥 ∈ ◡ ◡ 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) |
| 18 | 17 | anbi1d | ⊢ ( Rel 𝐴 → ( ( 𝑥 ∈ ◡ ◡ 𝐴 ∧ 𝑦 = ∪ ◡ { 𝑥 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡ { 𝑥 } ) ) ) |
| 19 | 18 | adantr | ⊢ ( ( Rel 𝐴 ∧ ( 𝑦 ∈ ◡ 𝐴 ∧ 𝑥 = ∪ ◡ { 𝑦 } ) ) → ( ( 𝑥 ∈ ◡ ◡ 𝐴 ∧ 𝑦 = ∪ ◡ { 𝑥 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡ { 𝑥 } ) ) ) |
| 20 | 14 19 | mpbid | ⊢ ( ( Rel 𝐴 ∧ ( 𝑦 ∈ ◡ 𝐴 ∧ 𝑥 = ∪ ◡ { 𝑦 } ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡ { 𝑥 } ) ) |
| 21 | 10 20 | impbida | ⊢ ( Rel 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡ { 𝑥 } ) ↔ ( 𝑦 ∈ ◡ 𝐴 ∧ 𝑥 = ∪ ◡ { 𝑦 } ) ) ) |
| 22 | 1 5 9 21 | f1od | ⊢ ( Rel 𝐴 → ( 𝑥 ∈ 𝐴 ↦ ∪ ◡ { 𝑥 } ) : 𝐴 –1-1-onto→ ◡ 𝐴 ) |