This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version of cbvmpo allows B to be a function of x . (Contributed by NM, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvmpox.1 | ⊢ Ⅎ 𝑧 𝐵 | |
| cbvmpox.2 | ⊢ Ⅎ 𝑥 𝐷 | ||
| cbvmpox.3 | ⊢ Ⅎ 𝑧 𝐶 | ||
| cbvmpox.4 | ⊢ Ⅎ 𝑤 𝐶 | ||
| cbvmpox.5 | ⊢ Ⅎ 𝑥 𝐸 | ||
| cbvmpox.6 | ⊢ Ⅎ 𝑦 𝐸 | ||
| cbvmpox.7 | ⊢ ( 𝑥 = 𝑧 → 𝐵 = 𝐷 ) | ||
| cbvmpox.8 | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝐶 = 𝐸 ) | ||
| Assertion | cbvmpox | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑧 ∈ 𝐴 , 𝑤 ∈ 𝐷 ↦ 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvmpox.1 | ⊢ Ⅎ 𝑧 𝐵 | |
| 2 | cbvmpox.2 | ⊢ Ⅎ 𝑥 𝐷 | |
| 3 | cbvmpox.3 | ⊢ Ⅎ 𝑧 𝐶 | |
| 4 | cbvmpox.4 | ⊢ Ⅎ 𝑤 𝐶 | |
| 5 | cbvmpox.5 | ⊢ Ⅎ 𝑥 𝐸 | |
| 6 | cbvmpox.6 | ⊢ Ⅎ 𝑦 𝐸 | |
| 7 | cbvmpox.7 | ⊢ ( 𝑥 = 𝑧 → 𝐵 = 𝐷 ) | |
| 8 | cbvmpox.8 | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝐶 = 𝐸 ) | |
| 9 | nfv | ⊢ Ⅎ 𝑧 𝑥 ∈ 𝐴 | |
| 10 | 1 | nfcri | ⊢ Ⅎ 𝑧 𝑦 ∈ 𝐵 |
| 11 | 9 10 | nfan | ⊢ Ⅎ 𝑧 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) |
| 12 | 3 | nfeq2 | ⊢ Ⅎ 𝑧 𝑢 = 𝐶 |
| 13 | 11 12 | nfan | ⊢ Ⅎ 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐶 ) |
| 14 | nfv | ⊢ Ⅎ 𝑤 𝑥 ∈ 𝐴 | |
| 15 | nfcv | ⊢ Ⅎ 𝑤 𝐵 | |
| 16 | 15 | nfcri | ⊢ Ⅎ 𝑤 𝑦 ∈ 𝐵 |
| 17 | 14 16 | nfan | ⊢ Ⅎ 𝑤 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) |
| 18 | 4 | nfeq2 | ⊢ Ⅎ 𝑤 𝑢 = 𝐶 |
| 19 | 17 18 | nfan | ⊢ Ⅎ 𝑤 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐶 ) |
| 20 | nfv | ⊢ Ⅎ 𝑥 𝑧 ∈ 𝐴 | |
| 21 | 2 | nfcri | ⊢ Ⅎ 𝑥 𝑤 ∈ 𝐷 |
| 22 | 20 21 | nfan | ⊢ Ⅎ 𝑥 ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐷 ) |
| 23 | 5 | nfeq2 | ⊢ Ⅎ 𝑥 𝑢 = 𝐸 |
| 24 | 22 23 | nfan | ⊢ Ⅎ 𝑥 ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑢 = 𝐸 ) |
| 25 | nfv | ⊢ Ⅎ 𝑦 ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐷 ) | |
| 26 | 6 | nfeq2 | ⊢ Ⅎ 𝑦 𝑢 = 𝐸 |
| 27 | 25 26 | nfan | ⊢ Ⅎ 𝑦 ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑢 = 𝐸 ) |
| 28 | eleq1w | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) | |
| 29 | 28 | adantr | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) |
| 30 | 7 | eleq2d | ⊢ ( 𝑥 = 𝑧 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐷 ) ) |
| 31 | eleq1w | ⊢ ( 𝑦 = 𝑤 → ( 𝑦 ∈ 𝐷 ↔ 𝑤 ∈ 𝐷 ) ) | |
| 32 | 30 31 | sylan9bb | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( 𝑦 ∈ 𝐵 ↔ 𝑤 ∈ 𝐷 ) ) |
| 33 | 29 32 | anbi12d | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐷 ) ) ) |
| 34 | 8 | eqeq2d | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( 𝑢 = 𝐶 ↔ 𝑢 = 𝐸 ) ) |
| 35 | 33 34 | anbi12d | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐶 ) ↔ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑢 = 𝐸 ) ) ) |
| 36 | 13 19 24 27 35 | cbvoprab12 | ⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑢 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐶 ) } = { 〈 〈 𝑧 , 𝑤 〉 , 𝑢 〉 ∣ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑢 = 𝐸 ) } |
| 37 | df-mpo | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑢 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐶 ) } | |
| 38 | df-mpo | ⊢ ( 𝑧 ∈ 𝐴 , 𝑤 ∈ 𝐷 ↦ 𝐸 ) = { 〈 〈 𝑧 , 𝑤 〉 , 𝑢 〉 ∣ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑢 = 𝐸 ) } | |
| 39 | 36 37 38 | 3eqtr4i | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑧 ∈ 𝐴 , 𝑤 ∈ 𝐷 ↦ 𝐸 ) |