This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express a two-argument function as a one-argument function, or vice-versa. In this version B ( x ) is not assumed to be constant w.r.t x . (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mpompt.1 | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → 𝐶 = 𝐷 ) | |
| Assertion | mpomptx | ⊢ ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpompt.1 | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → 𝐶 = 𝐷 ) | |
| 2 | df-mpt | ⊢ ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↦ 𝐶 ) = { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ∧ 𝑤 = 𝐶 ) } | |
| 3 | df-mpo | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐷 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑤 = 𝐷 ) } | |
| 4 | eliunxp | ⊢ ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) | |
| 5 | 4 | anbi1i | ⊢ ( ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ∧ 𝑤 = 𝐶 ) ↔ ( ∃ 𝑥 ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑤 = 𝐶 ) ) |
| 6 | 19.41vv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑤 = 𝐶 ) ↔ ( ∃ 𝑥 ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑤 = 𝐶 ) ) | |
| 7 | anass | ⊢ ( ( ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑤 = 𝐶 ) ↔ ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑤 = 𝐶 ) ) ) | |
| 8 | 1 | eqeq2d | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝑤 = 𝐶 ↔ 𝑤 = 𝐷 ) ) |
| 9 | 8 | anbi2d | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑤 = 𝐶 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑤 = 𝐷 ) ) ) |
| 10 | 9 | pm5.32i | ⊢ ( ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑤 = 𝐶 ) ) ↔ ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑤 = 𝐷 ) ) ) |
| 11 | 7 10 | bitri | ⊢ ( ( ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑤 = 𝐶 ) ↔ ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑤 = 𝐷 ) ) ) |
| 12 | 11 | 2exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑤 = 𝐶 ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑤 = 𝐷 ) ) ) |
| 13 | 5 6 12 | 3bitr2i | ⊢ ( ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ∧ 𝑤 = 𝐶 ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑤 = 𝐷 ) ) ) |
| 14 | 13 | opabbii | ⊢ { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ∧ 𝑤 = 𝐶 ) } = { 〈 𝑧 , 𝑤 〉 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑤 = 𝐷 ) ) } |
| 15 | dfoprab2 | ⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑤 = 𝐷 ) } = { 〈 𝑧 , 𝑤 〉 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑤 = 𝐷 ) ) } | |
| 16 | 14 15 | eqtr4i | ⊢ { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ∧ 𝑤 = 𝐶 ) } = { 〈 〈 𝑥 , 𝑦 〉 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑤 = 𝐷 ) } |
| 17 | 3 16 | eqtr4i | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐷 ) = { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ∧ 𝑤 = 𝐶 ) } |
| 18 | 2 17 | eqtr4i | ⊢ ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐷 ) |