This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of fmptco where ph needn't be distinct from x . (Contributed by NM, 27-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fmptcof.1 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝑅 ∈ 𝐵 ) | |
| fmptcof.2 | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ) | ||
| fmptcof.3 | ⊢ ( 𝜑 → 𝐺 = ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) ) | ||
| fmptcof.4 | ⊢ ( 𝑦 = 𝑅 → 𝑆 = 𝑇 ) | ||
| Assertion | fmptcof | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) = ( 𝑥 ∈ 𝐴 ↦ 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptcof.1 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝑅 ∈ 𝐵 ) | |
| 2 | fmptcof.2 | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ) | |
| 3 | fmptcof.3 | ⊢ ( 𝜑 → 𝐺 = ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) ) | |
| 4 | fmptcof.4 | ⊢ ( 𝑦 = 𝑅 → 𝑆 = 𝑇 ) | |
| 5 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝑅 | |
| 6 | 5 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝑅 ∈ 𝐵 |
| 7 | csbeq1a | ⊢ ( 𝑥 = 𝑧 → 𝑅 = ⦋ 𝑧 / 𝑥 ⦌ 𝑅 ) | |
| 8 | 7 | eleq1d | ⊢ ( 𝑥 = 𝑧 → ( 𝑅 ∈ 𝐵 ↔ ⦋ 𝑧 / 𝑥 ⦌ 𝑅 ∈ 𝐵 ) ) |
| 9 | 6 8 | rspc | ⊢ ( 𝑧 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 𝑅 ∈ 𝐵 → ⦋ 𝑧 / 𝑥 ⦌ 𝑅 ∈ 𝐵 ) ) |
| 10 | 1 9 | mpan9 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ⦋ 𝑧 / 𝑥 ⦌ 𝑅 ∈ 𝐵 ) |
| 11 | nfcv | ⊢ Ⅎ 𝑧 𝑅 | |
| 12 | 11 5 7 | cbvmpt | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) = ( 𝑧 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑥 ⦌ 𝑅 ) |
| 13 | 2 12 | eqtrdi | ⊢ ( 𝜑 → 𝐹 = ( 𝑧 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑥 ⦌ 𝑅 ) ) |
| 14 | nfcv | ⊢ Ⅎ 𝑤 𝑆 | |
| 15 | nfcsb1v | ⊢ Ⅎ 𝑦 ⦋ 𝑤 / 𝑦 ⦌ 𝑆 | |
| 16 | csbeq1a | ⊢ ( 𝑦 = 𝑤 → 𝑆 = ⦋ 𝑤 / 𝑦 ⦌ 𝑆 ) | |
| 17 | 14 15 16 | cbvmpt | ⊢ ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) = ( 𝑤 ∈ 𝐵 ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑆 ) |
| 18 | 3 17 | eqtrdi | ⊢ ( 𝜑 → 𝐺 = ( 𝑤 ∈ 𝐵 ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑆 ) ) |
| 19 | csbeq1 | ⊢ ( 𝑤 = ⦋ 𝑧 / 𝑥 ⦌ 𝑅 → ⦋ 𝑤 / 𝑦 ⦌ 𝑆 = ⦋ ⦋ 𝑧 / 𝑥 ⦌ 𝑅 / 𝑦 ⦌ 𝑆 ) | |
| 20 | 10 13 18 19 | fmptco | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) = ( 𝑧 ∈ 𝐴 ↦ ⦋ ⦋ 𝑧 / 𝑥 ⦌ 𝑅 / 𝑦 ⦌ 𝑆 ) ) |
| 21 | nfcv | ⊢ Ⅎ 𝑧 ⦋ 𝑅 / 𝑦 ⦌ 𝑆 | |
| 22 | nfcv | ⊢ Ⅎ 𝑥 𝑆 | |
| 23 | 5 22 | nfcsbw | ⊢ Ⅎ 𝑥 ⦋ ⦋ 𝑧 / 𝑥 ⦌ 𝑅 / 𝑦 ⦌ 𝑆 |
| 24 | 7 | csbeq1d | ⊢ ( 𝑥 = 𝑧 → ⦋ 𝑅 / 𝑦 ⦌ 𝑆 = ⦋ ⦋ 𝑧 / 𝑥 ⦌ 𝑅 / 𝑦 ⦌ 𝑆 ) |
| 25 | 21 23 24 | cbvmpt | ⊢ ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑅 / 𝑦 ⦌ 𝑆 ) = ( 𝑧 ∈ 𝐴 ↦ ⦋ ⦋ 𝑧 / 𝑥 ⦌ 𝑅 / 𝑦 ⦌ 𝑆 ) |
| 26 | 20 25 | eqtr4di | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) = ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑅 / 𝑦 ⦌ 𝑆 ) ) |
| 27 | eqid | ⊢ 𝐴 = 𝐴 | |
| 28 | nfcvd | ⊢ ( 𝑅 ∈ 𝐵 → Ⅎ 𝑦 𝑇 ) | |
| 29 | 28 4 | csbiegf | ⊢ ( 𝑅 ∈ 𝐵 → ⦋ 𝑅 / 𝑦 ⦌ 𝑆 = 𝑇 ) |
| 30 | 29 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝑅 ∈ 𝐵 → ∀ 𝑥 ∈ 𝐴 ⦋ 𝑅 / 𝑦 ⦌ 𝑆 = 𝑇 ) |
| 31 | mpteq12 | ⊢ ( ( 𝐴 = 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ⦋ 𝑅 / 𝑦 ⦌ 𝑆 = 𝑇 ) → ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑅 / 𝑦 ⦌ 𝑆 ) = ( 𝑥 ∈ 𝐴 ↦ 𝑇 ) ) | |
| 32 | 27 30 31 | sylancr | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝑅 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑅 / 𝑦 ⦌ 𝑆 ) = ( 𝑥 ∈ 𝐴 ↦ 𝑇 ) ) |
| 33 | 1 32 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑅 / 𝑦 ⦌ 𝑆 ) = ( 𝑥 ∈ 𝐴 ↦ 𝑇 ) ) |
| 34 | 26 33 | eqtrd | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) = ( 𝑥 ∈ 𝐴 ↦ 𝑇 ) ) |