This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for gsum2d2 : show the function is finitely supported. (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by AV, 9-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsum2d2.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsum2d2.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsum2d2.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsum2d2.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsum2d2.r | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐶 ∈ 𝑊 ) | ||
| gsum2d2.f | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) → 𝑋 ∈ 𝐵 ) | ||
| gsum2d2.u | ⊢ ( 𝜑 → 𝑈 ∈ Fin ) | ||
| gsum2d2.n | ⊢ ( ( 𝜑 ∧ ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ∧ ¬ 𝑗 𝑈 𝑘 ) ) → 𝑋 = 0 ) | ||
| Assertion | gsum2d2lem | ⊢ ( 𝜑 → ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) finSupp 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsum2d2.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsum2d2.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsum2d2.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | gsum2d2.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 5 | gsum2d2.r | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐶 ∈ 𝑊 ) | |
| 6 | gsum2d2.f | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) → 𝑋 ∈ 𝐵 ) | |
| 7 | gsum2d2.u | ⊢ ( 𝜑 → 𝑈 ∈ Fin ) | |
| 8 | gsum2d2.n | ⊢ ( ( 𝜑 ∧ ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ∧ ¬ 𝑗 𝑈 𝑘 ) ) → 𝑋 = 0 ) | |
| 9 | eqid | ⊢ ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) = ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) | |
| 10 | 9 | mpofun | ⊢ Fun ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) |
| 11 | 10 | a1i | ⊢ ( 𝜑 → Fun ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ) |
| 12 | 6 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐶 𝑋 ∈ 𝐵 ) |
| 13 | 9 | fmpox | ⊢ ( ∀ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐶 𝑋 ∈ 𝐵 ↔ ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) : ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ⟶ 𝐵 ) |
| 14 | 12 13 | sylib | ⊢ ( 𝜑 → ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) : ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ⟶ 𝐵 ) |
| 15 | nfv | ⊢ Ⅎ 𝑗 𝜑 | |
| 16 | nfiu1 | ⊢ Ⅎ 𝑗 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) | |
| 17 | nfcv | ⊢ Ⅎ 𝑗 𝑈 | |
| 18 | 16 17 | nfdif | ⊢ Ⅎ 𝑗 ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∖ 𝑈 ) |
| 19 | 18 | nfcri | ⊢ Ⅎ 𝑗 𝑧 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∖ 𝑈 ) |
| 20 | 15 19 | nfan | ⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑧 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∖ 𝑈 ) ) |
| 21 | nfmpo1 | ⊢ Ⅎ 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) | |
| 22 | nfcv | ⊢ Ⅎ 𝑗 𝑧 | |
| 23 | 21 22 | nffv | ⊢ Ⅎ 𝑗 ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ‘ 𝑧 ) |
| 24 | 23 | nfeq1 | ⊢ Ⅎ 𝑗 ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ‘ 𝑧 ) = 0 |
| 25 | relxp | ⊢ Rel ( { 𝑗 } × 𝐶 ) | |
| 26 | 25 | rgenw | ⊢ ∀ 𝑗 ∈ 𝐴 Rel ( { 𝑗 } × 𝐶 ) |
| 27 | reliun | ⊢ ( Rel ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ↔ ∀ 𝑗 ∈ 𝐴 Rel ( { 𝑗 } × 𝐶 ) ) | |
| 28 | 26 27 | mpbir | ⊢ Rel ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) |
| 29 | eldifi | ⊢ ( 𝑧 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∖ 𝑈 ) → 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ) | |
| 30 | 29 | adantl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∖ 𝑈 ) ) → 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ) |
| 31 | elrel | ⊢ ( ( Rel ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ) → ∃ 𝑗 ∃ 𝑘 𝑧 = 〈 𝑗 , 𝑘 〉 ) | |
| 32 | 28 30 31 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∖ 𝑈 ) ) → ∃ 𝑗 ∃ 𝑘 𝑧 = 〈 𝑗 , 𝑘 〉 ) |
| 33 | nfv | ⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑧 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∖ 𝑈 ) ) | |
| 34 | nfmpo2 | ⊢ Ⅎ 𝑘 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) | |
| 35 | nfcv | ⊢ Ⅎ 𝑘 𝑧 | |
| 36 | 34 35 | nffv | ⊢ Ⅎ 𝑘 ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ‘ 𝑧 ) |
| 37 | 36 | nfeq1 | ⊢ Ⅎ 𝑘 ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ‘ 𝑧 ) = 0 |
| 38 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∖ 𝑈 ) ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) ) → 𝑧 = 〈 𝑗 , 𝑘 〉 ) | |
| 39 | 38 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∖ 𝑈 ) ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) ) → ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ‘ 𝑧 ) = ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ‘ 〈 𝑗 , 𝑘 〉 ) ) |
| 40 | df-ov | ⊢ ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑘 ) = ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ‘ 〈 𝑗 , 𝑘 〉 ) | |
| 41 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∖ 𝑈 ) ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) ) → 𝑧 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∖ 𝑈 ) ) | |
| 42 | 38 41 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∖ 𝑈 ) ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) ) → 〈 𝑗 , 𝑘 〉 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∖ 𝑈 ) ) |
| 43 | 42 | eldifad | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∖ 𝑈 ) ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) ) → 〈 𝑗 , 𝑘 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ) |
| 44 | opeliunxp | ⊢ ( 〈 𝑗 , 𝑘 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ↔ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) | |
| 45 | 43 44 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∖ 𝑈 ) ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) ) → ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) |
| 46 | 45 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∖ 𝑈 ) ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) ) → 𝑗 ∈ 𝐴 ) |
| 47 | 45 | simprd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∖ 𝑈 ) ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) ) → 𝑘 ∈ 𝐶 ) |
| 48 | 45 6 | syldan | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∖ 𝑈 ) ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) ) → 𝑋 ∈ 𝐵 ) |
| 49 | 9 | ovmpt4g | ⊢ ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑘 ) = 𝑋 ) |
| 50 | 46 47 48 49 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∖ 𝑈 ) ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) ) → ( 𝑗 ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) 𝑘 ) = 𝑋 ) |
| 51 | 40 50 | eqtr3id | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∖ 𝑈 ) ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) ) → ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ‘ 〈 𝑗 , 𝑘 〉 ) = 𝑋 ) |
| 52 | eldifn | ⊢ ( 𝑧 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∖ 𝑈 ) → ¬ 𝑧 ∈ 𝑈 ) | |
| 53 | 52 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∖ 𝑈 ) ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) ) → ¬ 𝑧 ∈ 𝑈 ) |
| 54 | 38 | eleq1d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∖ 𝑈 ) ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) ) → ( 𝑧 ∈ 𝑈 ↔ 〈 𝑗 , 𝑘 〉 ∈ 𝑈 ) ) |
| 55 | df-br | ⊢ ( 𝑗 𝑈 𝑘 ↔ 〈 𝑗 , 𝑘 〉 ∈ 𝑈 ) | |
| 56 | 54 55 | bitr4di | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∖ 𝑈 ) ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) ) → ( 𝑧 ∈ 𝑈 ↔ 𝑗 𝑈 𝑘 ) ) |
| 57 | 53 56 | mtbid | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∖ 𝑈 ) ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) ) → ¬ 𝑗 𝑈 𝑘 ) |
| 58 | 45 57 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∖ 𝑈 ) ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) ) → ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ∧ ¬ 𝑗 𝑈 𝑘 ) ) |
| 59 | 58 8 | syldan | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∖ 𝑈 ) ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) ) → 𝑋 = 0 ) |
| 60 | 39 51 59 | 3eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∖ 𝑈 ) ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) ) → ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ‘ 𝑧 ) = 0 ) |
| 61 | 60 | expr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∖ 𝑈 ) ) → ( 𝑧 = 〈 𝑗 , 𝑘 〉 → ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ‘ 𝑧 ) = 0 ) ) |
| 62 | 33 37 61 | exlimd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∖ 𝑈 ) ) → ( ∃ 𝑘 𝑧 = 〈 𝑗 , 𝑘 〉 → ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ‘ 𝑧 ) = 0 ) ) |
| 63 | 20 24 32 62 | exlimimdd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐶 ) ∖ 𝑈 ) ) → ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ‘ 𝑧 ) = 0 ) |
| 64 | 14 63 | suppss | ⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) supp 0 ) ⊆ 𝑈 ) |
| 65 | 7 64 | ssfid | ⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) supp 0 ) ∈ Fin ) |
| 66 | 5 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝐴 𝐶 ∈ 𝑊 ) |
| 67 | 9 | mpoexxg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑗 ∈ 𝐴 𝐶 ∈ 𝑊 ) → ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ∈ V ) |
| 68 | 4 66 67 | syl2anc | ⊢ ( 𝜑 → ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ∈ V ) |
| 69 | 2 | fvexi | ⊢ 0 ∈ V |
| 70 | 69 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 71 | isfsupp | ⊢ ( ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ∈ V ∧ 0 ∈ V ) → ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) finSupp 0 ↔ ( Fun ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ∧ ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) supp 0 ) ∈ Fin ) ) ) | |
| 72 | 68 70 71 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) finSupp 0 ↔ ( Fun ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ∧ ( ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) supp 0 ) ∈ Fin ) ) ) |
| 73 | 11 65 72 | mpbir2and | ⊢ ( 𝜑 → ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) finSupp 0 ) |