This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Tarski-Grothendieck Axiom implies the Axiom of Choice (in the form of cardeqv ). This can be put in a more conventional form via ween and dfac8 . Note that the mere existence of strongly inaccessible cardinals doesn't imply AC, but rather the particular form of the Tarski-Grothendieck axiom (see http://www.cs.nyu.edu/pipermail/fom/2008-March/012783.html ). (Contributed by Mario Carneiro, 19-Apr-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grothac | ⊢ dom card = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq | ⊢ ( 𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦 ) | |
| 2 | 1 | sseq1d | ⊢ ( 𝑥 = 𝑦 → ( 𝒫 𝑥 ⊆ 𝑢 ↔ 𝒫 𝑦 ⊆ 𝑢 ) ) |
| 3 | 1 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( 𝒫 𝑥 ∈ 𝑢 ↔ 𝒫 𝑦 ∈ 𝑢 ) ) |
| 4 | 2 3 | anbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ) ↔ ( 𝒫 𝑦 ⊆ 𝑢 ∧ 𝒫 𝑦 ∈ 𝑢 ) ) ) |
| 5 | 4 | rspcva | ⊢ ( ( 𝑦 ∈ 𝑢 ∧ ∀ 𝑥 ∈ 𝑢 ( 𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ) ) → ( 𝒫 𝑦 ⊆ 𝑢 ∧ 𝒫 𝑦 ∈ 𝑢 ) ) |
| 6 | 5 | simpld | ⊢ ( ( 𝑦 ∈ 𝑢 ∧ ∀ 𝑥 ∈ 𝑢 ( 𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ) ) → 𝒫 𝑦 ⊆ 𝑢 ) |
| 7 | rabss | ⊢ ( { 𝑥 ∈ 𝒫 𝑢 ∣ 𝑥 ≺ 𝑢 } ⊆ 𝑢 ↔ ∀ 𝑥 ∈ 𝒫 𝑢 ( 𝑥 ≺ 𝑢 → 𝑥 ∈ 𝑢 ) ) | |
| 8 | 7 | biimpri | ⊢ ( ∀ 𝑥 ∈ 𝒫 𝑢 ( 𝑥 ≺ 𝑢 → 𝑥 ∈ 𝑢 ) → { 𝑥 ∈ 𝒫 𝑢 ∣ 𝑥 ≺ 𝑢 } ⊆ 𝑢 ) |
| 9 | vex | ⊢ 𝑦 ∈ V | |
| 10 | 9 | canth2 | ⊢ 𝑦 ≺ 𝒫 𝑦 |
| 11 | sdomdom | ⊢ ( 𝑦 ≺ 𝒫 𝑦 → 𝑦 ≼ 𝒫 𝑦 ) | |
| 12 | 10 11 | ax-mp | ⊢ 𝑦 ≼ 𝒫 𝑦 |
| 13 | ssdomg | ⊢ ( 𝑢 ∈ V → ( 𝒫 𝑦 ⊆ 𝑢 → 𝒫 𝑦 ≼ 𝑢 ) ) | |
| 14 | 13 | elv | ⊢ ( 𝒫 𝑦 ⊆ 𝑢 → 𝒫 𝑦 ≼ 𝑢 ) |
| 15 | domtr | ⊢ ( ( 𝑦 ≼ 𝒫 𝑦 ∧ 𝒫 𝑦 ≼ 𝑢 ) → 𝑦 ≼ 𝑢 ) | |
| 16 | 12 14 15 | sylancr | ⊢ ( 𝒫 𝑦 ⊆ 𝑢 → 𝑦 ≼ 𝑢 ) |
| 17 | vex | ⊢ 𝑢 ∈ V | |
| 18 | tskwe | ⊢ ( ( 𝑢 ∈ V ∧ { 𝑥 ∈ 𝒫 𝑢 ∣ 𝑥 ≺ 𝑢 } ⊆ 𝑢 ) → 𝑢 ∈ dom card ) | |
| 19 | 17 18 | mpan | ⊢ ( { 𝑥 ∈ 𝒫 𝑢 ∣ 𝑥 ≺ 𝑢 } ⊆ 𝑢 → 𝑢 ∈ dom card ) |
| 20 | numdom | ⊢ ( ( 𝑢 ∈ dom card ∧ 𝑦 ≼ 𝑢 ) → 𝑦 ∈ dom card ) | |
| 21 | 20 | expcom | ⊢ ( 𝑦 ≼ 𝑢 → ( 𝑢 ∈ dom card → 𝑦 ∈ dom card ) ) |
| 22 | 16 19 21 | syl2im | ⊢ ( 𝒫 𝑦 ⊆ 𝑢 → ( { 𝑥 ∈ 𝒫 𝑢 ∣ 𝑥 ≺ 𝑢 } ⊆ 𝑢 → 𝑦 ∈ dom card ) ) |
| 23 | 6 8 22 | syl2im | ⊢ ( ( 𝑦 ∈ 𝑢 ∧ ∀ 𝑥 ∈ 𝑢 ( 𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ) ) → ( ∀ 𝑥 ∈ 𝒫 𝑢 ( 𝑥 ≺ 𝑢 → 𝑥 ∈ 𝑢 ) → 𝑦 ∈ dom card ) ) |
| 24 | 23 | 3impia | ⊢ ( ( 𝑦 ∈ 𝑢 ∧ ∀ 𝑥 ∈ 𝑢 ( 𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑢 ( 𝑥 ≺ 𝑢 → 𝑥 ∈ 𝑢 ) ) → 𝑦 ∈ dom card ) |
| 25 | axgroth6 | ⊢ ∃ 𝑢 ( 𝑦 ∈ 𝑢 ∧ ∀ 𝑥 ∈ 𝑢 ( 𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑢 ( 𝑥 ≺ 𝑢 → 𝑥 ∈ 𝑢 ) ) | |
| 26 | 24 25 | exlimiiv | ⊢ 𝑦 ∈ dom card |
| 27 | 26 9 | 2th | ⊢ ( 𝑦 ∈ dom card ↔ 𝑦 ∈ V ) |
| 28 | 27 | eqriv | ⊢ dom card = V |