This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A proof of the equivalency of the well-ordering theorem weth and the axiom of choice ac7 . (Contributed by Mario Carneiro, 5-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfac8 | ⊢ ( CHOICE ↔ ∀ 𝑥 ∃ 𝑟 𝑟 We 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac3 | ⊢ ( CHOICE ↔ ∀ 𝑦 ∃ 𝑓 ∀ 𝑧 ∈ 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | vpwex | ⊢ 𝒫 𝑥 ∈ V | |
| 4 | raleq | ⊢ ( 𝑦 = 𝒫 𝑥 → ( ∀ 𝑧 ∈ 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ∀ 𝑧 ∈ 𝒫 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) | |
| 5 | 4 | exbidv | ⊢ ( 𝑦 = 𝒫 𝑥 → ( ∃ 𝑓 ∀ 𝑧 ∈ 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ∃ 𝑓 ∀ 𝑧 ∈ 𝒫 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 6 | 3 5 | spcv | ⊢ ( ∀ 𝑦 ∃ 𝑓 ∀ 𝑧 ∈ 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑓 ∀ 𝑧 ∈ 𝒫 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 7 | dfac8a | ⊢ ( 𝑥 ∈ V → ( ∃ 𝑓 ∀ 𝑧 ∈ 𝒫 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → 𝑥 ∈ dom card ) ) | |
| 8 | 2 6 7 | mpsyl | ⊢ ( ∀ 𝑦 ∃ 𝑓 ∀ 𝑧 ∈ 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → 𝑥 ∈ dom card ) |
| 9 | dfac8b | ⊢ ( 𝑥 ∈ dom card → ∃ 𝑟 𝑟 We 𝑥 ) | |
| 10 | 8 9 | syl | ⊢ ( ∀ 𝑦 ∃ 𝑓 ∀ 𝑧 ∈ 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑟 𝑟 We 𝑥 ) |
| 11 | 10 | alrimiv | ⊢ ( ∀ 𝑦 ∃ 𝑓 ∀ 𝑧 ∈ 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∀ 𝑥 ∃ 𝑟 𝑟 We 𝑥 ) |
| 12 | vex | ⊢ 𝑦 ∈ V | |
| 13 | vuniex | ⊢ ∪ 𝑦 ∈ V | |
| 14 | weeq2 | ⊢ ( 𝑥 = ∪ 𝑦 → ( 𝑟 We 𝑥 ↔ 𝑟 We ∪ 𝑦 ) ) | |
| 15 | 14 | exbidv | ⊢ ( 𝑥 = ∪ 𝑦 → ( ∃ 𝑟 𝑟 We 𝑥 ↔ ∃ 𝑟 𝑟 We ∪ 𝑦 ) ) |
| 16 | 13 15 | spcv | ⊢ ( ∀ 𝑥 ∃ 𝑟 𝑟 We 𝑥 → ∃ 𝑟 𝑟 We ∪ 𝑦 ) |
| 17 | dfac8c | ⊢ ( 𝑦 ∈ V → ( ∃ 𝑟 𝑟 We ∪ 𝑦 → ∃ 𝑓 ∀ 𝑧 ∈ 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) | |
| 18 | 12 16 17 | mpsyl | ⊢ ( ∀ 𝑥 ∃ 𝑟 𝑟 We 𝑥 → ∃ 𝑓 ∀ 𝑧 ∈ 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 19 | 18 | alrimiv | ⊢ ( ∀ 𝑥 ∃ 𝑟 𝑟 We 𝑥 → ∀ 𝑦 ∃ 𝑓 ∀ 𝑧 ∈ 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 20 | 11 19 | impbii | ⊢ ( ∀ 𝑦 ∃ 𝑓 ∀ 𝑧 ∈ 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ∀ 𝑥 ∃ 𝑟 𝑟 We 𝑥 ) |
| 21 | 1 20 | bitri | ⊢ ( CHOICE ↔ ∀ 𝑥 ∃ 𝑟 𝑟 We 𝑥 ) |