This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Tarski-Grothendieck Axiom implies the Axiom of Choice (in the form of cardeqv ). This can be put in a more conventional form via ween and dfac8 . Note that the mere existence of strongly inaccessible cardinals doesn't imply AC, but rather the particular form of the Tarski-Grothendieck axiom (see http://www.cs.nyu.edu/pipermail/fom/2008-March/012783.html ). (Contributed by Mario Carneiro, 19-Apr-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grothac |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq | ||
| 2 | 1 | sseq1d | |
| 3 | 1 | eleq1d | |
| 4 | 2 3 | anbi12d | |
| 5 | 4 | rspcva | |
| 6 | 5 | simpld | |
| 7 | rabss | ||
| 8 | 7 | biimpri | |
| 9 | vex | ||
| 10 | 9 | canth2 | |
| 11 | sdomdom | ||
| 12 | 10 11 | ax-mp | |
| 13 | ssdomg | ||
| 14 | 13 | elv | |
| 15 | domtr | ||
| 16 | 12 14 15 | sylancr | |
| 17 | vex | ||
| 18 | tskwe | ||
| 19 | 17 18 | mpan | |
| 20 | numdom | ||
| 21 | 20 | expcom | |
| 22 | 16 19 21 | syl2im | |
| 23 | 6 8 22 | syl2im | |
| 24 | 23 | 3impia | |
| 25 | axgroth6 | ||
| 26 | 24 25 | exlimiiv | |
| 27 | 26 9 | 2th | |
| 28 | 27 | eqriv |