This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Tarski-Grothendieck Axiom implies the Axiom of Choice (in the form of cardeqv ). This can be put in a more conventional form via ween and dfac8 . Note that the mere existence of strongly inaccessible cardinals doesn't imply AC, but rather the particular form of the Tarski-Grothendieck axiom (see http://www.cs.nyu.edu/pipermail/fom/2008-March/012783.html ). (Contributed by Mario Carneiro, 19-Apr-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grothac | |- dom card = _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq | |- ( x = y -> ~P x = ~P y ) |
|
| 2 | 1 | sseq1d | |- ( x = y -> ( ~P x C_ u <-> ~P y C_ u ) ) |
| 3 | 1 | eleq1d | |- ( x = y -> ( ~P x e. u <-> ~P y e. u ) ) |
| 4 | 2 3 | anbi12d | |- ( x = y -> ( ( ~P x C_ u /\ ~P x e. u ) <-> ( ~P y C_ u /\ ~P y e. u ) ) ) |
| 5 | 4 | rspcva | |- ( ( y e. u /\ A. x e. u ( ~P x C_ u /\ ~P x e. u ) ) -> ( ~P y C_ u /\ ~P y e. u ) ) |
| 6 | 5 | simpld | |- ( ( y e. u /\ A. x e. u ( ~P x C_ u /\ ~P x e. u ) ) -> ~P y C_ u ) |
| 7 | rabss | |- ( { x e. ~P u | x ~< u } C_ u <-> A. x e. ~P u ( x ~< u -> x e. u ) ) |
|
| 8 | 7 | biimpri | |- ( A. x e. ~P u ( x ~< u -> x e. u ) -> { x e. ~P u | x ~< u } C_ u ) |
| 9 | vex | |- y e. _V |
|
| 10 | 9 | canth2 | |- y ~< ~P y |
| 11 | sdomdom | |- ( y ~< ~P y -> y ~<_ ~P y ) |
|
| 12 | 10 11 | ax-mp | |- y ~<_ ~P y |
| 13 | ssdomg | |- ( u e. _V -> ( ~P y C_ u -> ~P y ~<_ u ) ) |
|
| 14 | 13 | elv | |- ( ~P y C_ u -> ~P y ~<_ u ) |
| 15 | domtr | |- ( ( y ~<_ ~P y /\ ~P y ~<_ u ) -> y ~<_ u ) |
|
| 16 | 12 14 15 | sylancr | |- ( ~P y C_ u -> y ~<_ u ) |
| 17 | vex | |- u e. _V |
|
| 18 | tskwe | |- ( ( u e. _V /\ { x e. ~P u | x ~< u } C_ u ) -> u e. dom card ) |
|
| 19 | 17 18 | mpan | |- ( { x e. ~P u | x ~< u } C_ u -> u e. dom card ) |
| 20 | numdom | |- ( ( u e. dom card /\ y ~<_ u ) -> y e. dom card ) |
|
| 21 | 20 | expcom | |- ( y ~<_ u -> ( u e. dom card -> y e. dom card ) ) |
| 22 | 16 19 21 | syl2im | |- ( ~P y C_ u -> ( { x e. ~P u | x ~< u } C_ u -> y e. dom card ) ) |
| 23 | 6 8 22 | syl2im | |- ( ( y e. u /\ A. x e. u ( ~P x C_ u /\ ~P x e. u ) ) -> ( A. x e. ~P u ( x ~< u -> x e. u ) -> y e. dom card ) ) |
| 24 | 23 | 3impia | |- ( ( y e. u /\ A. x e. u ( ~P x C_ u /\ ~P x e. u ) /\ A. x e. ~P u ( x ~< u -> x e. u ) ) -> y e. dom card ) |
| 25 | axgroth6 | |- E. u ( y e. u /\ A. x e. u ( ~P x C_ u /\ ~P x e. u ) /\ A. x e. ~P u ( x ~< u -> x e. u ) ) |
|
| 26 | 24 25 | exlimiiv | |- y e. dom card |
| 27 | 26 9 | 2th | |- ( y e. dom card <-> y e. _V ) |
| 28 | 27 | eqriv | |- dom card = _V |